Cargando…

Thermal Resonance and Cell Behavior

From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy. In cancer, the growth control is damaged. In this pa...

Descripción completa

Detalles Bibliográficos
Autores principales: Lucia, Umberto, Grisolia, Giulia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: MDPI 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517324/
https://www.ncbi.nlm.nih.gov/pubmed/33286546
http://dx.doi.org/10.3390/e22070774
Descripción
Sumario:From a thermodynamic point of view, living cell life is no more than a cyclic process. It starts with the newly separated daughter cells and restarts when the next generations grow as free entities. During this cycle, the cell changes its entropy. In cancer, the growth control is damaged. In this paper, we analyze the role of the volume–area ratio in the cell in relation to the heat exchange between cell and its environment in order to point out its effect on cancer growth. The result holds to a possible control of the cancer growth based on the heat exchanged by the cancer toward its environment and the membrane potential variation, with the consequence of controlling the ions fluxes and the related biochemical reactions. This second law approach could represent a starting point for a possible future support for the anticancer therapies, in order to improve their effectiveness for the untreatable cancers.