Cargando…
Enhancing scientific discoveries in molecular biology with deep generative models
Generative models provide a well‐established statistical framework for evaluating uncertainty and deriving conclusions from large data sets especially in the presence of noise, sparsity, and bias. Initially developed for computer vision and natural language processing, these models have been shown t...
Autores principales: | Lopez, Romain, Gayoso, Adam, Yosef, Nir |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517326/ https://www.ncbi.nlm.nih.gov/pubmed/32975352 http://dx.doi.org/10.15252/msb.20199198 |
Ejemplares similares
-
An empirical Bayes method for differential expression analysis of single cells with deep generative models
por: Boyeau, Pierre, et al.
Publicado: (2023) -
PeakVI: A deep generative model for single-cell chromatin accessibility analysis
por: Ashuach, Tal, et al.
Publicado: (2022) -
Deep Generative Modeling for Single-cell Transcriptomics
por: Lopez, Romain, et al.
Publicado: (2018) -
Joint probabilistic modeling of single-cell multi-omic data with totalVI
por: Gayoso, Adam, et al.
Publicado: (2021) -
Probabilistic harmonization and annotation of single‐cell transcriptomics data with deep generative models
por: Xu, Chenling, et al.
Publicado: (2021)