Cargando…
Oxidation of polyunsaturated fatty acids to produce lipid mediators
The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects t...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Portland Press Ltd.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517362/ https://www.ncbi.nlm.nih.gov/pubmed/32618335 http://dx.doi.org/10.1042/EBC20190082 |
_version_ | 1783587212807372800 |
---|---|
author | Christie, William W. Harwood, John L. |
author_facet | Christie, William W. Harwood, John L. |
author_sort | Christie, William W. |
collection | PubMed |
description | The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C(20) fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C(18) polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts. |
format | Online Article Text |
id | pubmed-7517362 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Portland Press Ltd. |
record_format | MEDLINE/PubMed |
spelling | pubmed-75173622020-10-02 Oxidation of polyunsaturated fatty acids to produce lipid mediators Christie, William W. Harwood, John L. Essays Biochem Metabolism The chemistry, biochemistry, pharmacology and molecular biology of oxylipins (defined as a family of oxygenated natural products that are formed from unsaturated fatty acids by pathways involving at least one step of dioxygen-dependent oxidation) are complex and occasionally contradictory subjects that continue to develop at an extraordinarily rapid rate. The term includes docosanoids (e.g. protectins, resolvins and maresins, or specialized pro-resolving mediators), eicosanoids and octadecanoids and plant oxylipins, which are derived from either the omega-6 (n-6) or the omega-3 (n-3) families of polyunsaturated fatty acids. For example, the term eicosanoid is used to embrace those biologically active lipid mediators that are derived from C(20) fatty acids, and include prostaglandins, thromboxanes, leukotrienes, hydroxyeicosatetraenoic acids and related oxygenated derivatives. The key enzymes for the production of prostanoids are prostaglandin endoperoxide H synthases (cyclo-oxygenases), while lipoxygenases and oxidases of the cytochrome P450 family produce numerous other metabolites. In plants, the lipoxygenase pathway from C(18) polyunsaturated fatty acids yields a variety of important products, especially the jasmonates, which have some comparable structural features and functions. Related oxylipins are produced by non-enzymic means (isoprostanes), while fatty acid esters of hydroxy fatty acids (FAHFA) are now being considered together with the oxylipins from a functional perspective. In all kingdoms of life, oxylipins usually act as lipid mediators through specific receptors, have short half-lives and have functions in innumerable biological contexts. Portland Press Ltd. 2020-09 2020-07-03 /pmc/articles/PMC7517362/ /pubmed/32618335 http://dx.doi.org/10.1042/EBC20190082 Text en © 2020 The Author(s). https://creativecommons.org/licenses/by/4.0/ This is an open access article published by Portland Press Limited on behalf of the Biochemical Society and distributed under the Creative Commons Attribution License 4.0 (CC BY). Open access for this article was enabled by the participation of Cardiff University in an all-inclusive Read & Publish pilot with Portland Press and the Biochemical Society under a transformative agreement with JISC. |
spellingShingle | Metabolism Christie, William W. Harwood, John L. Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title | Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title_full | Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title_fullStr | Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title_full_unstemmed | Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title_short | Oxidation of polyunsaturated fatty acids to produce lipid mediators |
title_sort | oxidation of polyunsaturated fatty acids to produce lipid mediators |
topic | Metabolism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517362/ https://www.ncbi.nlm.nih.gov/pubmed/32618335 http://dx.doi.org/10.1042/EBC20190082 |
work_keys_str_mv | AT christiewilliamw oxidationofpolyunsaturatedfattyacidstoproducelipidmediators AT harwoodjohnl oxidationofpolyunsaturatedfattyacidstoproducelipidmediators |