Cargando…
Multi-Label Feature Selection Based on High-Order Label Correlation Assumption
Multi-label data often involve features with high dimensionality and complicated label correlations, resulting in a great challenge for multi-label learning. Feature selection plays an important role in multi-label learning to address multi-label data. Exploring label correlations is crucial for mul...
Autores principales: | Zhang, Ping, Gao, Wanfu, Hu, Juncheng, Li, Yonghao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517369/ https://www.ncbi.nlm.nih.gov/pubmed/33286568 http://dx.doi.org/10.3390/e22070797 |
Ejemplares similares
-
Multi-Label Feature Selection Combining Three Types of Conditional Relevance
por: Gao, Lingbo, et al.
Publicado: (2021) -
Online Multi-Label Streaming Feature Selection Based on Label Group Correlation and Feature Interaction
por: Liu, Jinghua, et al.
Publicado: (2023) -
Partial Classifier Chains with Feature Selection by Exploiting Label Correlation in Multi-Label Classification
por: Wang, Zhenwu, et al.
Publicado: (2020) -
Label recovery and label correlation co-learning for multi-view multi-label classification with incomplete labels
por: He, Zhi-Fen, et al.
Publicado: (2022) -
An evolutionary decomposition-based multi-objective feature selection for multi-label classification
por: Asilian Bidgoli, Azam, et al.
Publicado: (2020)