Cargando…
Variable Selection Using Nonlocal Priors in High-Dimensional Generalized Linear Models With Application to fMRI Data Analysis
High-dimensional variable selection is an important research topic in modern statistics. While methods using nonlocal priors have been thoroughly studied for variable selection in linear regression, the crucial high-dimensional model selection properties for nonlocal priors in generalized linear mod...
Autores principales: | Cao, Xuan, Lee, Kyoungjae |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517378/ https://www.ncbi.nlm.nih.gov/pubmed/33286578 http://dx.doi.org/10.3390/e22080807 |
Ejemplares similares
-
BG2: Bayesian variable selection in generalized linear mixed models with nonlocal priors for non-Gaussian GWAS data
por: Xu, Shuangshuang, et al.
Publicado: (2023) -
BGWAS: Bayesian variable selection in linear mixed models with nonlocal priors for genome-wide association studies
por: Williams, Jacob, et al.
Publicado: (2023) -
Locally Linear Embedding and fMRI Feature Selection in Psychiatric Classification
Publicado: (2019) -
Bayesian MEG time courses with fMRI priors
por: Wang, Yingying, et al.
Publicado: (2021) -
High-dimensional multivariate autoregressive model estimation of human electrophysiological data using fMRI priors
por: Nagle, Alliot, et al.
Publicado: (2023)