Cargando…
Hybrid Quantum-Classical Neural Network for Calculating Ground State Energies of Molecules
We present a hybrid quantum-classical neural network that can be trained to perform electronic structure calculation and generate potential energy curves of simple molecules. The method is based on the combination of parameterized quantum circuits and measurements. With unsupervised training, the ne...
Autores principales: | Xia, Rongxin, Kais, Sabre |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517416/ https://www.ncbi.nlm.nih.gov/pubmed/33286599 http://dx.doi.org/10.3390/e22080828 |
Ejemplares similares
-
Quantum machine learning for electronic structure calculations
por: Xia, Rongxin, et al.
Publicado: (2018) -
A quantum algorithm for evolving open quantum dynamics on quantum computing devices
por: Hu, Zixuan, et al.
Publicado: (2020) -
Approximating Ground States by Neural Network Quantum States
por: Yang, Ying, et al.
Publicado: (2019) -
Exploring hybrid quantum-classical neural networks for particle tracking
por: Rieger, Carla
Publicado: (2020) -
Characterizing quantum circuits with qubit functional configurations
por: Hu, Zixuan, et al.
Publicado: (2023)