Cargando…
Evaluation of Feature Extraction and Classification for Lower Limb Motion Based on sEMG Signal
The real-time and accuracy of motion classification plays an essential role for the elderly or frail people in daily activities. This study aims to determine the optimal feature extraction and classification method for the activities of daily living (ADL). In the experiment, we collected surface ele...
Autores principales: | Qin, Pengjie, Shi, Xin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517453/ https://www.ncbi.nlm.nih.gov/pubmed/33286623 http://dx.doi.org/10.3390/e22080852 |
Ejemplares similares
-
Comparison of sEMG-Based Feature Extraction and Motion Classification Methods for Upper-Limb Movement
por: Guo, Shuxiang, et al.
Publicado: (2015) -
A motion-classification strategy based on sEMG-EEG signal combination for upper-limb amputees
por: Li, Xiangxin, et al.
Publicado: (2017) -
SVM-Based Classification of sEMG Signals for Upper-Limb Self-Rehabilitation Training
por: Cai, Siqi, et al.
Publicado: (2019) -
Classification of Aggressive Behaviors Based on sEMG Feature Extraction and Machine Learning Algorithm
por: Kim, Youngjun, et al.
Publicado: (2020) -
A Spiking Neural Network in sEMG Feature Extraction
por: Lobov, Sergey, et al.
Publicado: (2015)