Cargando…
Deep Bi-LSTM Networks for Sequential Recommendation
Recent years have seen a surge in approaches that combine deep learning and recommendation systems to capture user preference or item interaction evolution over time. However, the most related work only consider the sequential similarity between the items and neglects the item content feature inform...
Autores principales: | Zhao, Chuanchuan, You, Jinguo, Wen, Xinxian, Li, Xiaowu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517473/ https://www.ncbi.nlm.nih.gov/pubmed/33286641 http://dx.doi.org/10.3390/e22080870 |
Ejemplares similares
-
Predictions for COVID-19 with deep learning models of LSTM, GRU and Bi-LSTM
por: Shahid, Farah, et al.
Publicado: (2020) -
ECG signal classification based on deep CNN and BiLSTM
por: Cheng, Jinyong, et al.
Publicado: (2021) -
CNN-Bi-LSTM: A Complex Environment-Oriented Cattle Behavior Classification Network Based on the Fusion of CNN and Bi-LSTM
por: Gao, Guohong, et al.
Publicado: (2023) -
Human Activity Recognition Based on Residual Network and BiLSTM
por: Li, Yong, et al.
Publicado: (2022) -
Word Sequential Using Deep LSTM and Matrix Factorization to Handle Rating Sparse Data for E-Commerce Recommender System
por: Hanafi,, et al.
Publicado: (2021)