Cargando…
Bayesian(3) Active Learning for the Gaussian Process Emulator Using Information Theory
Gaussian process emulators (GPE) are a machine learning approach that replicates computational demanding models using training runs of that model. Constructing such a surrogate is very challenging and, in the context of Bayesian inference, the training runs should be well invested. The current paper...
Autores principales: | Oladyshkin, Sergey, Mohammadi, Farid, Kroeker, Ilja, Nowak, Wolfgang |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517511/ https://www.ncbi.nlm.nih.gov/pubmed/33286660 http://dx.doi.org/10.3390/e22080890 |
Ejemplares similares
-
The Connection between Bayesian Inference and Information Theory for Model Selection, Information Gain and Experimental Design
por: Oladyshkin, Sergey, et al.
Publicado: (2019) -
GpABC: a Julia package for approximate Bayesian computation with Gaussian process emulation
por: Tankhilevich, Evgeny, et al.
Publicado: (2020) -
Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator
por: Chang, Eugene T Y, et al.
Publicado: (2015) -
Correction: Bayesian Sensitivity Analysis of a Cardiac Cell Model Using a Gaussian Process Emulator
por: Chang, Eugene T. Y., et al.
Publicado: (2015) -
Expectation-Maximization Algorithm for the Calibration of Complex Simulator Using a Gaussian Process Emulator
por: Seo, Yun Am, et al.
Publicado: (2020)