Cargando…
Separated Channel Attention Convolutional Neural Network (SC-CNN-Attention) to Identify ADHD in Multi-Site Rs-fMRI Dataset
The accurate identification of an attention deficit hyperactivity disorder (ADHD) subject has remained a challenge for both neuroscience research and clinical diagnosis. Unfortunately, the traditional methods concerning the classification model and feature extraction usually depend on the single-cha...
Autores principales: | Zhang, Tao, Li, Cunbo, Li, Peiyang, Peng, Yueheng, Kang, Xiaodong, Jiang, Chenyang, Li, Fali, Zhu, Xuyang, Yao, Dezhong, Biswal, Bharat, Xu, Peng |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517519/ https://www.ncbi.nlm.nih.gov/pubmed/33286662 http://dx.doi.org/10.3390/e22080893 |
Ejemplares similares
-
Segregating sustained attention from response inhibition in ADHD: An fMRI study
por: Hwang, Soonjo, et al.
Publicado: (2019) -
An Adaptive Calibration Framework for mVEP-Based Brain-Computer Interface
por: Ma, Teng, et al.
Publicado: (2018) -
Anticancer Peptide Prediction via Multi-Kernel CNN and Attention Model
por: Wu, Xiujin, et al.
Publicado: (2022) -
P_VggNet: A convolutional neural network (CNN) with pixel-based attention map
por: Liu, Kunhua, et al.
Publicado: (2018) -
DC-CNN: Dual-channel Convolutional Neural Networks with attention-pooling for fake news detection
por: Ma, Kun, et al.
Publicado: (2022)