Cargando…
A Novel Model on Reinforce K-Means Using Location Division Model and Outlier of Initial Value for Lowering Data Cost
Today, semi-structured and unstructured data are mainly collected and analyzed for data analysis applicable to various systems. Such data have a dense distribution of space and usually contain outliers and noise data. There have been ongoing research studies on clustering algorithms to classify such...
Autores principales: | Jung, Se-Hoon, Lee, Hansung, Huh, Jun-Ho |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517527/ https://www.ncbi.nlm.nih.gov/pubmed/33286671 http://dx.doi.org/10.3390/e22080902 |
Ejemplares similares
-
Outlier Detection with Reinforcement Learning for Costly to Verify Data
por: Nijhuis, Michiel, et al.
Publicado: (2023) -
The Impact of Outliers on Net-Benefit Regression Model in Cost-Effectiveness Analysis
por: Wen, Yu-Wen, et al.
Publicado: (2013) -
Identification of differentially expressed genes by means of outlier detection
por: Irigoien, Itziar, et al.
Publicado: (2018) -
Trend-Residual Dual Modeling for Detection of Outliers in Low-Cost GPS Trajectories
por: Chen, Xiaojian, et al.
Publicado: (2016) -
Outlier Removal in Model-Based Missing Value Imputation for Medical Datasets
por: Huang, Min-Wei, et al.
Publicado: (2018)