Cargando…
Estimating Hearing Thresholds From Stimulus-Frequency Otoacoustic Emissions
It is of clinical interest to estimate pure-tone thresholds from potentially available objective measures, such as stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs can determine hearing status (normal hearing vs. hearing loss), but few studies have explored their further potential in predic...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
SAGE Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7517986/ https://www.ncbi.nlm.nih.gov/pubmed/32965182 http://dx.doi.org/10.1177/2331216520960053 |
Sumario: | It is of clinical interest to estimate pure-tone thresholds from potentially available objective measures, such as stimulus-frequency otoacoustic emissions (SFOAEs). SFOAEs can determine hearing status (normal hearing vs. hearing loss), but few studies have explored their further potential in predicting audiometric thresholds. The current study investigates the ability of SFOAEs to predict hearing thresholds at octave frequencies from 0.5 to 8 kHz. SFOAE input/output functions and pure-tone thresholds were measured from 230 ears with normal hearing and 737 ears with sensorineural hearing loss. Two methods were used to predict hearing thresholds. Method 1 is a linear regression model; Method 2 proposed in this study is a back propagation (BP) network predictor built on the bases of a BP neural network and principal component analysis. In addition, a BP network classifier was built to identify hearing status. Both Methods 1 and 2 were able to predict hearing thresholds from 0.5 to 8 kHz, but Method 2 achieved better performance than Method 1. The BP network classifiers achieved excellent performance in determining the presence or absence of hearing loss at all test frequencies. The results show that SFOAEs are not only able to identify hearing status with great accuracy at all test frequencies but, more importantly, can predict hearing thresholds at octave frequencies from 0.5 to 8 kHz, with best performance at 0.5 to 4 kHz. The BP network predictor is a potential tool for quantitatively predicting hearing thresholds, at least at 0.5 to 4 kHz. |
---|