Cargando…
2D and 3D convolutional neural networks for outcome modelling of locally advanced head and neck squamous cell carcinoma
For treatment individualisation of patients with locally advanced head and neck squamous cell carcinoma (HNSCC) treated with primary radiochemotherapy, we explored the capabilities of different deep learning approaches for predicting loco-regional tumour control (LRC) from treatment-planning compute...
Autores principales: | Starke, Sebastian, Leger, Stefan, Zwanenburg, Alex, Leger, Karoline, Lohaus, Fabian, Linge, Annett, Schreiber, Andreas, Kalinauskaite, Goda, Tinhofer, Inge, Guberina, Nika, Guberina, Maja, Balermpas, Panagiotis, von der Grün, Jens, Ganswindt, Ute, Belka, Claus, Peeken, Jan C., Combs, Stephanie E., Boeke, Simon, Zips, Daniel, Richter, Christian, Troost, Esther G. C., Krause, Mechthild, Baumann, Michael, Löck, Steffen |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518264/ https://www.ncbi.nlm.nih.gov/pubmed/32973220 http://dx.doi.org/10.1038/s41598-020-70542-9 |
Ejemplares similares
-
Multitask Learning with Convolutional Neural Networks and Vision Transformers Can Improve Outcome Prediction for Head and Neck Cancer Patients
por: Starke, Sebastian, et al.
Publicado: (2023) -
Comprehensive Analysis of Tumour Sub-Volumes for Radiomic Risk Modelling in Locally Advanced HNSCC
por: Leger, Stefan, et al.
Publicado: (2020) -
Integrated radiogenomics analyses allow for subtype classification and improved outcome prognosis of patients with locally advanced HNSCC
por: Rabasco Meneghetti, Asier, et al.
Publicado: (2022) -
A comparative study of machine learning methods for time-to-event survival data for radiomics risk modelling
por: Leger, Stefan, et al.
Publicado: (2017) -
A Novel 2-Metagene Signature to Identify High-Risk HNSCC Patients amongst Those Who Are Clinically at Intermediate Risk and Are Treated with PORT
por: Patil, Shivaprasad, et al.
Publicado: (2022)