Cargando…

State-level prescription drug monitoring program mandates and adolescent injection drug use in the United States, 1995–2017: A difference-in-differences analysis

BACKGROUND: Prescription opioid misuse is an ongoing crisis and a risk factor for injection drug use (IDU). Few studies have evaluated strategies for preventing opioid or IDU initiation among adolescents. We evaluated changes in the proportion of adolescents reporting IDU before and after prescripti...

Descripción completa

Detalles Bibliográficos
Autores principales: Earlywine, Joel J., Hadland, Scott E., Raifman, Julia
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518580/
https://www.ncbi.nlm.nih.gov/pubmed/32976539
http://dx.doi.org/10.1371/journal.pmed.1003272
Descripción
Sumario:BACKGROUND: Prescription opioid misuse is an ongoing crisis and a risk factor for injection drug use (IDU). Few studies have evaluated strategies for preventing opioid or IDU initiation among adolescents. We evaluated changes in the proportion of adolescents reporting IDU before and after prescription drug monitoring program (PDMP) mandates were implemented in 18 states compared to 29 states without such mandates. METHODS AND FINDINGS: This difference-in-differences analysis used biannual Youth Risk Behavioral Surveillance System (YRBSS) data representative of adolescents 17 to 18 years old across 47 states from 1995 to 2017. We compared changes in adolescent IDU in 18 states with and 29 states without PDMP mandates. Among 331,025 adolescents, 51.7% identified as male, 62.1% as non-Hispanic white, 17.4% as non-Hispanic black, and 14.6% as Hispanic. Overall, 3.5% reported IDU during the 2 years prior to PDMP mandates. In the final multivariable difference-in-differences model, we included individual age, sex, and race/ethnicity, as well as state and year as covariates from the YRBSS. We also included state- and year-specific poverty rates based on US Census Bureau data. Additionally, we controlled for state implementation of (non-mandated) PDMPs before states subsequently implemented mandates and pill mill laws. We conducted several sensitivity analyses, including repeating our main analysis using a logistic, rather than linear, model, and with a lead indicator on PDMP mandate implementation, a lag indicator, and alternative policy implementation dates. PDMP mandates were associated with a 1.5 percentage point reduction (95% CI −2.3 to −0.6 percentage points; p = 0.001) in adolescent IDU, on average over the years following mandate implementation, a relative reduction of 42.9% (95% CI −65.7% to −17.1%). The association of PDMP mandates with this reduction persisted at least 4 years beyond implementation. Sensitivity analyses were consistent with the main results. Limitations include the multi-stepped causal pathway from PDMP mandate implementation to changes in IDU and the potential for omitted state-level time-varying confounders. CONCLUSIONS: Our analysis indicated that PDMP mandates were associated with a reduction in adolescent IDU, providing empirical evidence that such mandates may prevent adolescents from initiating IDU. Policymakers might consider PDMP mandates as a potential strategy for preventing adolescent IDU.