Cargando…
Public discourse and sentiment during the COVID 19 pandemic: Using Latent Dirichlet Allocation for topic modeling on Twitter
The study aims to understand Twitter users’ discourse and psychological reactions to COVID-19. We use machine learning techniques to analyze about 1.9 million Tweets (written in English) related to coronavirus collected from January 23 to March 7, 2020. A total of salient 11 topics are identified an...
Autores principales: | Xue, Jia, Chen, Junxiang, Chen, Chen, Zheng, Chengda, Li, Sijia, Zhu, Tingshao |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518625/ https://www.ncbi.nlm.nih.gov/pubmed/32976519 http://dx.doi.org/10.1371/journal.pone.0239441 |
Ejemplares similares
-
Public perceptions of digital fashion: An analysis of sentiment and Latent Dirichlet Allocation topic modeling
por: Zou, Yixin, et al.
Publicado: (2022) -
Context-Aware Latent Dirichlet Allocation for Topic Segmentation
por: Li, Wenbo, et al.
Publicado: (2020) -
Public sentiment analysis on urban regeneration: A massive data study based on sentiment knowledge enhanced pre-training and latent Dirichlet allocation
por: Chen, Kehao, et al.
Publicado: (2023) -
Twitter Discussions and Emotions About the COVID-19 Pandemic: Machine Learning Approach
por: Xue, Jia, et al.
Publicado: (2020) -
Identifying Topics and Evolutionary Trends of Literature on Brain Metastases Using Latent Dirichlet Allocation
por: Chen, Jiarong, et al.
Publicado: (2022)