Cargando…
Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia
Accelerometry data has been widely used to measure activity and the circadian rhythm of individuals across the health sciences, in particular with people with advanced dementia. Modern accelerometers can record continuous observations on a single individual for several days at a sampling frequency o...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518630/ https://www.ncbi.nlm.nih.gov/pubmed/32976498 http://dx.doi.org/10.1371/journal.pone.0239368 |
_version_ | 1783587428164960256 |
---|---|
author | Suibkitwanchai, Keerati Sykulski, Adam M. Perez Algorta, Guillermo Waller, Daniel Walshe, Catherine |
author_facet | Suibkitwanchai, Keerati Sykulski, Adam M. Perez Algorta, Guillermo Waller, Daniel Walshe, Catherine |
author_sort | Suibkitwanchai, Keerati |
collection | PubMed |
description | Accelerometry data has been widely used to measure activity and the circadian rhythm of individuals across the health sciences, in particular with people with advanced dementia. Modern accelerometers can record continuous observations on a single individual for several days at a sampling frequency of the order of one hertz. Such rich and lengthy data sets provide new opportunities for statistical insight, but also pose challenges in selecting from a wide range of possible summary statistics, and how the calculation of such statistics should be optimally tuned and implemented. In this paper, we build on existing approaches, as well as propose new summary statistics, and detail how these should be implemented with high frequency accelerometry data. We test and validate our methods on an observed data set from 26 recordings from individuals with advanced dementia and 14 recordings from individuals without dementia. We study four metrics: Interdaily stability (IS), intradaily variability (IV), the scaling exponent from detrended fluctuation analysis (DFA), and a novel nonparametric estimator which we call the proportion of variance (PoV), which calculates the strength of the circadian rhythm using spectral density estimation. We perform a detailed analysis indicating how the time series should be optimally subsampled to calculate IV, and recommend a subsampling rate of approximately 5 minutes for the dataset that has been studied. In addition, we propose the use of the DFA scaling exponent separately for daytime and nighttime, to further separate effects between individuals. We compare the relationships between all these methods and show that they effectively capture different features of the time series. |
format | Online Article Text |
id | pubmed-7518630 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-75186302020-10-02 Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia Suibkitwanchai, Keerati Sykulski, Adam M. Perez Algorta, Guillermo Waller, Daniel Walshe, Catherine PLoS One Research Article Accelerometry data has been widely used to measure activity and the circadian rhythm of individuals across the health sciences, in particular with people with advanced dementia. Modern accelerometers can record continuous observations on a single individual for several days at a sampling frequency of the order of one hertz. Such rich and lengthy data sets provide new opportunities for statistical insight, but also pose challenges in selecting from a wide range of possible summary statistics, and how the calculation of such statistics should be optimally tuned and implemented. In this paper, we build on existing approaches, as well as propose new summary statistics, and detail how these should be implemented with high frequency accelerometry data. We test and validate our methods on an observed data set from 26 recordings from individuals with advanced dementia and 14 recordings from individuals without dementia. We study four metrics: Interdaily stability (IS), intradaily variability (IV), the scaling exponent from detrended fluctuation analysis (DFA), and a novel nonparametric estimator which we call the proportion of variance (PoV), which calculates the strength of the circadian rhythm using spectral density estimation. We perform a detailed analysis indicating how the time series should be optimally subsampled to calculate IV, and recommend a subsampling rate of approximately 5 minutes for the dataset that has been studied. In addition, we propose the use of the DFA scaling exponent separately for daytime and nighttime, to further separate effects between individuals. We compare the relationships between all these methods and show that they effectively capture different features of the time series. Public Library of Science 2020-09-25 /pmc/articles/PMC7518630/ /pubmed/32976498 http://dx.doi.org/10.1371/journal.pone.0239368 Text en © 2020 Suibkitwanchai et al http://creativecommons.org/licenses/by/4.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/) , which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. |
spellingShingle | Research Article Suibkitwanchai, Keerati Sykulski, Adam M. Perez Algorta, Guillermo Waller, Daniel Walshe, Catherine Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title | Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title_full | Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title_fullStr | Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title_full_unstemmed | Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title_short | Nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
title_sort | nonparametric time series summary statistics for high-frequency accelerometry data from individuals with advanced dementia |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518630/ https://www.ncbi.nlm.nih.gov/pubmed/32976498 http://dx.doi.org/10.1371/journal.pone.0239368 |
work_keys_str_mv | AT suibkitwanchaikeerati nonparametrictimeseriessummarystatisticsforhighfrequencyaccelerometrydatafromindividualswithadvanceddementia AT sykulskiadamm nonparametrictimeseriessummarystatisticsforhighfrequencyaccelerometrydatafromindividualswithadvanceddementia AT perezalgortaguillermo nonparametrictimeseriessummarystatisticsforhighfrequencyaccelerometrydatafromindividualswithadvanceddementia AT wallerdaniel nonparametrictimeseriessummarystatisticsforhighfrequencyaccelerometrydatafromindividualswithadvanceddementia AT walshecatherine nonparametrictimeseriessummarystatisticsforhighfrequencyaccelerometrydatafromindividualswithadvanceddementia |