Cargando…
Magnetic Hamiltonian parameter estimation using deep learning techniques
Understanding spin textures in magnetic systems is extremely important to the spintronics and it is vital to extrapolate the magnetic Hamiltonian parameters through the experimentally determined spin. It can provide a better complementary link between theories and experimental results. We demonstrat...
Autores principales: | Kwon, H. Y., Yoon, H. G., Lee, C., Chen, G., Liu, K., Schmid, A. K., Wu, Y. Z., Choi, J. W., Won, C. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Association for the Advancement of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518863/ https://www.ncbi.nlm.nih.gov/pubmed/32978161 http://dx.doi.org/10.1126/sciadv.abb0872 |
Ejemplares similares
-
Estimating the effective fields of spin configurations using a deep learning technique
por: Lee, D. B., et al.
Publicado: (2021) -
An innovative magnetic state generator using machine learning techniques
por: Kwon, H. Y., et al.
Publicado: (2019) -
Super-resolution of magnetic systems using deep learning
por: Lee, D. B., et al.
Publicado: (2023) -
Searching for the ground state of complex spin-ice systems using deep learning techniques
por: Kwon, H. Y., et al.
Publicado: (2022) -
Magnetic State Generation using Hamiltonian Guided Variational Autoencoder with Spin Structure Stabilization
por: Kwon, Hee Young, et al.
Publicado: (2021)