Cargando…

Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review

Lung cancer is the number one cause of cancer-related deaths in the United States as well as worldwide. Radiologists and physicians experience heavy daily workloads, thus are at high risk for burn-out. To alleviate this burden, this narrative literature review compares the performance of four differ...

Descripción completa

Detalles Bibliográficos
Autores principales: Sathyakumar, Kaviya, Munoz, Michael, Singh, Jaikaran, Hussain, Nowair, Babu, Benson A
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cureus 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518939/
https://www.ncbi.nlm.nih.gov/pubmed/32989411
http://dx.doi.org/10.7759/cureus.10017
_version_ 1783587476064960512
author Sathyakumar, Kaviya
Munoz, Michael
Singh, Jaikaran
Hussain, Nowair
Babu, Benson A
author_facet Sathyakumar, Kaviya
Munoz, Michael
Singh, Jaikaran
Hussain, Nowair
Babu, Benson A
author_sort Sathyakumar, Kaviya
collection PubMed
description Lung cancer is the number one cause of cancer-related deaths in the United States as well as worldwide. Radiologists and physicians experience heavy daily workloads, thus are at high risk for burn-out. To alleviate this burden, this narrative literature review compares the performance of four different artificial intelligence (AI) models in lung nodule cancer detection, as well as their performance to physicians/radiologists reading accuracy. A total of 648 articles were selected by two experienced physicians with over 10 years of experience in the fields of pulmonary critical care, and hospital medicine. The data bases used to search and select the articles are PubMed/MEDLINE, EMBASE, Cochrane library, Google Scholar, Web of science, IEEEXplore, and DBLP. The articles selected range from the years between 2008 and 2019. Four out of 648 articles were selected using the following inclusion criteria: 1) 18-65 years old, 2) CT chest scans, 2) lung nodule, 3) lung cancer, 3) deep learning, 4) ensemble and 5) classic methods. The exclusion criteria used in this narrative review include: 1) age greater than 65 years old, 2) positron emission tomography (PET) hybrid scans, 3) chest X-ray (CXR) and 4) genomics. The model performance outcomes metrics are measured and evaluated in sensitivity, specificity, accuracy, receiver operator characteristic (ROC) curve, and the area under the curve (AUC). This hybrid deep-learning model is a state-of-the-art architecture, with high-performance accuracy and low false-positive results. Future studies, comparing each model accuracy at depth is key. Automated physician-assist systems as this model in this review article help preserve a quality doctor-patient relationship.
format Online
Article
Text
id pubmed-7518939
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Cureus
record_format MEDLINE/PubMed
spelling pubmed-75189392020-09-27 Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review Sathyakumar, Kaviya Munoz, Michael Singh, Jaikaran Hussain, Nowair Babu, Benson A Cureus Oncology Lung cancer is the number one cause of cancer-related deaths in the United States as well as worldwide. Radiologists and physicians experience heavy daily workloads, thus are at high risk for burn-out. To alleviate this burden, this narrative literature review compares the performance of four different artificial intelligence (AI) models in lung nodule cancer detection, as well as their performance to physicians/radiologists reading accuracy. A total of 648 articles were selected by two experienced physicians with over 10 years of experience in the fields of pulmonary critical care, and hospital medicine. The data bases used to search and select the articles are PubMed/MEDLINE, EMBASE, Cochrane library, Google Scholar, Web of science, IEEEXplore, and DBLP. The articles selected range from the years between 2008 and 2019. Four out of 648 articles were selected using the following inclusion criteria: 1) 18-65 years old, 2) CT chest scans, 2) lung nodule, 3) lung cancer, 3) deep learning, 4) ensemble and 5) classic methods. The exclusion criteria used in this narrative review include: 1) age greater than 65 years old, 2) positron emission tomography (PET) hybrid scans, 3) chest X-ray (CXR) and 4) genomics. The model performance outcomes metrics are measured and evaluated in sensitivity, specificity, accuracy, receiver operator characteristic (ROC) curve, and the area under the curve (AUC). This hybrid deep-learning model is a state-of-the-art architecture, with high-performance accuracy and low false-positive results. Future studies, comparing each model accuracy at depth is key. Automated physician-assist systems as this model in this review article help preserve a quality doctor-patient relationship. Cureus 2020-08-25 /pmc/articles/PMC7518939/ /pubmed/32989411 http://dx.doi.org/10.7759/cureus.10017 Text en Copyright © 2020, Sathyakumar et al. http://creativecommons.org/licenses/by/3.0/ This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
spellingShingle Oncology
Sathyakumar, Kaviya
Munoz, Michael
Singh, Jaikaran
Hussain, Nowair
Babu, Benson A
Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title_full Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title_fullStr Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title_full_unstemmed Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title_short Automated Lung Cancer Detection Using Artificial Intelligence (AI) Deep Convolutional Neural Networks: A Narrative Literature Review
title_sort automated lung cancer detection using artificial intelligence (ai) deep convolutional neural networks: a narrative literature review
topic Oncology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518939/
https://www.ncbi.nlm.nih.gov/pubmed/32989411
http://dx.doi.org/10.7759/cureus.10017
work_keys_str_mv AT sathyakumarkaviya automatedlungcancerdetectionusingartificialintelligenceaideepconvolutionalneuralnetworksanarrativeliteraturereview
AT munozmichael automatedlungcancerdetectionusingartificialintelligenceaideepconvolutionalneuralnetworksanarrativeliteraturereview
AT singhjaikaran automatedlungcancerdetectionusingartificialintelligenceaideepconvolutionalneuralnetworksanarrativeliteraturereview
AT hussainnowair automatedlungcancerdetectionusingartificialintelligenceaideepconvolutionalneuralnetworksanarrativeliteraturereview
AT babubensona automatedlungcancerdetectionusingartificialintelligenceaideepconvolutionalneuralnetworksanarrativeliteraturereview