Cargando…
Transfer learning enables the molecular transformer to predict regio- and stereoselective reactions on carbohydrates
Organic synthesis methodology enables the synthesis of complex molecules and materials used in all fields of science and technology and represents a vast body of accumulated knowledge optimally suited for deep learning. While most organic reactions involve distinct functional groups and can readily...
Autores principales: | Pesciullesi, Giorgio, Schwaller, Philippe, Laino, Teodoro, Reymond, Jean-Louis |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519051/ https://www.ncbi.nlm.nih.gov/pubmed/32978395 http://dx.doi.org/10.1038/s41467-020-18671-7 |
Ejemplares similares
-
Extraction of organic chemistry grammar from unsupervised learning of chemical reactions
por: Schwaller, Philippe, et al.
Publicado: (2021) -
Regio- and stereoselective intermolecular carbolithiation reactions
por: Marsico, G., et al.
Publicado: (2020) -
Regio- and stereoselective carbometallation reactions of N-alkynylamides and sulfonamides
por: Minko, Yury, et al.
Publicado: (2013) -
Predicting enzymatic reactions with a molecular transformer
por: Kreutter, David, et al.
Publicado: (2021) -
Regio- and stereoselective synthesis of new diaminocyclopentanols
por: Larin, Evgeni A, et al.
Publicado: (2014)