Cargando…

Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network

The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forwa...

Descripción completa

Detalles Bibliográficos
Autores principales: Comes, Maria Colomba, Filippi, J., Mencattini, A., Corsi, F., Casti, P., De Ninno, A., Di Giuseppe, D., D’Orazio, M., Ghibelli, L., Mattei, F., Schiavoni, G., Businaro, L., Di Natale, C., Martinelli, E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519062/
https://www.ncbi.nlm.nih.gov/pubmed/32973301
http://dx.doi.org/10.1038/s41598-020-72605-3
_version_ 1783587502924234752
author Comes, Maria Colomba
Filippi, J.
Mencattini, A.
Corsi, F.
Casti, P.
De Ninno, A.
Di Giuseppe, D.
D’Orazio, M.
Ghibelli, L.
Mattei, F.
Schiavoni, G.
Businaro, L.
Di Natale, C.
Martinelli, E.
author_facet Comes, Maria Colomba
Filippi, J.
Mencattini, A.
Corsi, F.
Casti, P.
De Ninno, A.
Di Giuseppe, D.
D’Orazio, M.
Ghibelli, L.
Mattei, F.
Schiavoni, G.
Businaro, L.
Di Natale, C.
Martinelli, E.
author_sort Comes, Maria Colomba
collection PubMed
description The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts.
format Online
Article
Text
id pubmed-7519062
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75190622020-09-29 Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network Comes, Maria Colomba Filippi, J. Mencattini, A. Corsi, F. Casti, P. De Ninno, A. Di Giuseppe, D. D’Orazio, M. Ghibelli, L. Mattei, F. Schiavoni, G. Businaro, L. Di Natale, C. Martinelli, E. Sci Rep Article The incremented uptake provided by time-lapse microscopy in Organ-on-a-Chip (OoC) devices allowed increased attention to the dynamics of the co-cultured systems. However, the amount of information stored in long-time experiments may constitute a serious bottleneck of the experimental pipeline. Forward long-term prediction of cell trajectories may reduce the spatial–temporal burden of video sequences storage. Cell trajectory prediction becomes crucial especially to increase the trustworthiness in software tools designed to conduct a massive analysis of cell behavior under chemical stimuli. To address this task, we transpose here the exploitation of the presence of “social forces” from the human to the cellular level for motion prediction at microscale by adapting the potential of Social Generative Adversarial Network predictors to cell motility. To demonstrate the effectiveness of the approach, we consider here two case studies: one related to PC-3 prostate cancer cells cultured in 2D Petri dishes under control and treated conditions and one related to an OoC experiment of tumor-immune interaction in fibrosarcoma cells. The goodness of the proposed strategy has been verified by successfully comparing the distributions of common descriptors (kinematic descriptors and mean interaction time for the two scenarios respectively) from the trajectories obtained by video analysis and the predicted counterparts. Nature Publishing Group UK 2020-09-24 /pmc/articles/PMC7519062/ /pubmed/32973301 http://dx.doi.org/10.1038/s41598-020-72605-3 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Comes, Maria Colomba
Filippi, J.
Mencattini, A.
Corsi, F.
Casti, P.
De Ninno, A.
Di Giuseppe, D.
D’Orazio, M.
Ghibelli, L.
Mattei, F.
Schiavoni, G.
Businaro, L.
Di Natale, C.
Martinelli, E.
Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title_full Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title_fullStr Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title_full_unstemmed Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title_short Accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using Social Generative Adversarial Network
title_sort accelerating the experimental responses on cell behaviors: a long-term prediction of cell trajectories using social generative adversarial network
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519062/
https://www.ncbi.nlm.nih.gov/pubmed/32973301
http://dx.doi.org/10.1038/s41598-020-72605-3
work_keys_str_mv AT comesmariacolomba acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT filippij acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT mencattinia acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT corsif acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT castip acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT deninnoa acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT digiusepped acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT doraziom acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT ghibellil acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT matteif acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT schiavonig acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT businarol acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT dinatalec acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork
AT martinellie acceleratingtheexperimentalresponsesoncellbehaviorsalongtermpredictionofcelltrajectoriesusingsocialgenerativeadversarialnetwork