Cargando…

Behavioral effects induced by organic insecticides can be exploited for a sustainable control of the Orange Spiny Whitefly Aleurocanthus spiniferus

The Orange Spiny Whitefly (OSW) Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) represents a new serious threat to Citrus spp., grapevine and ornamental plants in the whole Mediterranean area. Such threat urgently calls for the development of a sustainable control strategy, including insecticides...

Descripción completa

Detalles Bibliográficos
Autores principales: Mokrane, Selma, Cavallo, Giuseppe, Tortorici, Francesco, Romero, Elena, Fereres, Alberto, Djelouah, Khaled, Verrastro, Vincenzo, Cornara, Daniele
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519102/
https://www.ncbi.nlm.nih.gov/pubmed/32978466
http://dx.doi.org/10.1038/s41598-020-72972-x
Descripción
Sumario:The Orange Spiny Whitefly (OSW) Aleurocanthus spiniferus (Hemiptera: Aleyrodidae) represents a new serious threat to Citrus spp., grapevine and ornamental plants in the whole Mediterranean area. Such threat urgently calls for the development of a sustainable control strategy, including insecticides compatible with biological control, and applicable also in organic citrus farming that represent an essential part of Mediterranean agricultural economy. Therefore, we evaluated the toxicity and the effects on host searching, oviposition, and probing and feeding behavior exerted on OSW by organic insecticides supposed to have limited side effects on environment and ecosystem services, i.e. sweet orange essential oil (EO), extract of Clitoria ternatea (CT), mineral oil, pyrethrin and azadirachtin. Despite none of the compounds caused a significant mortality of any of the OSW instars, we observed interesting effects on whitefly behavior: (i) EO and pyrethrin showed a relevant repellent effect, with impairment of both adults landing and oviposition on treated plants; (ii) CT and pyrethrin strongly affected probing behavior. Here, in the light of our findings, we discuss possible OSW sustainable control strategies and further research perspectives.