Cargando…
A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions
In most crops, genetic and environmental factors interact in complex ways giving rise to substantial genotype-by-environment interactions (G×E). We propose that computer simulations leveraging field trial data, DNA sequences, and historical weather records can be used to tackle the longstanding prob...
Autores principales: | de los Campos, Gustavo, Pérez-Rodríguez, Paulino, Bogard, Matthieu, Gouache, David, Crossa, José |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519145/ https://www.ncbi.nlm.nih.gov/pubmed/32978378 http://dx.doi.org/10.1038/s41467-020-18480-y |
Ejemplares similares
-
Author Correction: A data-driven simulation platform to predict cultivars’ performances under uncertain weather conditions
por: de los Campos, Gustavo, et al.
Publicado: (2021) -
Multi-generation genomic prediction of maize yield using parametric and non-parametric sparse selection indices
por: Lopez-Cruz, Marco, et al.
Publicado: (2021) -
Bayesian Genomic Prediction with Genotype × Environment Interaction Kernel Models
por: Cuevas, Jaime, et al.
Publicado: (2016) -
Threshold Models for Genome-Enabled Prediction of Ordinal Categorical Traits in Plant Breeding
por: Montesinos-López, Osval A., et al.
Publicado: (2014) -
Laboratory simulations of acid-sulfate weathering under volcanic hydrothermal conditions: Implications for early Mars
por: Marcucci, Emma C, et al.
Publicado: (2014)