Cargando…
Auto-segmentations by convolutional neural network in cervical and anorectal cancer with clinical structure sets as the ground truth
BACKGROUND: It is time-consuming for oncologists to delineate volumes for radiotherapy treatment in computer tomography (CT) images. Automatic delineation based on image processing exists, but with varied accuracy and moderate time savings. Using convolutional neural network (CNN), delineations of v...
Autores principales: | Sartor, Hanna, Minarik, David, Enqvist, Olof, Ulén, Johannes, Wittrup, Anders, Bjurberg, Maria, Trägårdh, Elin |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519211/ https://www.ncbi.nlm.nih.gov/pubmed/33005756 http://dx.doi.org/10.1016/j.ctro.2020.09.004 |
Ejemplares similares
-
Artificial intelligence-aided CT segmentation for body composition analysis: a validation study
por: Borrelli, Pablo, et al.
Publicado: (2021) -
Freely available convolutional neural network-based quantification of PET/CT lesions is associated with survival in patients with lung cancer
por: Borrelli, Pablo, et al.
Publicado: (2022) -
Convolutional neural network-based automatic heart segmentation and quantitation in (123)I-metaiodobenzylguanidine SPECT imaging
por: Saito, Shintaro, et al.
Publicado: (2021) -
RECOMIA—a cloud-based platform for artificial intelligence research in nuclear medicine and radiology
por: Trägårdh, Elin, et al.
Publicado: (2020) -
AI-based detection of lung lesions in [(18)F]FDG PET-CT from lung cancer patients
por: Borrelli, Pablo, et al.
Publicado: (2021)