Cargando…

A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade

Immune checkpoint blockade (ICB) is efficacious in many diverse cancer types, but not all patients respond. It is important to understand the mechanisms driving resistance to these treatments and to identify predictive biomarkers of response to provide best treatment options for all patients. Here w...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Ivy X., Newcomer, Kathleen, Pauken, Kristen E., Juneja, Vikram R., Naxerova, Kamila, Wu, Michelle W., Pinter, Matthias, Sen, Debattama R., Singer, Meromit, Sharpe, Arlene H., Jain, Rakesh K.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519254/
https://www.ncbi.nlm.nih.gov/pubmed/32907939
http://dx.doi.org/10.1073/pnas.2002806117
_version_ 1783587543027023872
author Chen, Ivy X.
Newcomer, Kathleen
Pauken, Kristen E.
Juneja, Vikram R.
Naxerova, Kamila
Wu, Michelle W.
Pinter, Matthias
Sen, Debattama R.
Singer, Meromit
Sharpe, Arlene H.
Jain, Rakesh K.
author_facet Chen, Ivy X.
Newcomer, Kathleen
Pauken, Kristen E.
Juneja, Vikram R.
Naxerova, Kamila
Wu, Michelle W.
Pinter, Matthias
Sen, Debattama R.
Singer, Meromit
Sharpe, Arlene H.
Jain, Rakesh K.
author_sort Chen, Ivy X.
collection PubMed
description Immune checkpoint blockade (ICB) is efficacious in many diverse cancer types, but not all patients respond. It is important to understand the mechanisms driving resistance to these treatments and to identify predictive biomarkers of response to provide best treatment options for all patients. Here we introduce a resection and response-assessment approach for studying the tumor microenvironment before or shortly after treatment initiation to identify predictive biomarkers differentiating responders from nonresponders. Our approach builds on a bilateral tumor implantation technique in a murine metastatic breast cancer model (E0771) coupled with anti-PD-1 therapy. Using our model, we show that tumors from mice responding to ICB therapy had significantly higher CD8(+) T cells and fewer Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs) at early time points following therapy initiation. RNA sequencing on the intratumoral CD8(+) T cells identified the presence of T cell exhaustion pathways in nonresponding tumors and T cell activation in responding tumors. Strikingly, we showed that our derived response and resistance signatures significantly segregate patients by survival and associate with patient response to ICB. Furthermore, we identified decreased expression of CXCR3 in nonresponding mice and showed that tumors grown in Cxcr3(−/−) mice had an elevated resistance rate to anti-PD-1 treatment. Our findings suggest that the resection and response tumor model can be used to identify response and resistance biomarkers to ICB therapy and guide the use of combination therapy to further boost the antitumor efficacy of ICB.
format Online
Article
Text
id pubmed-7519254
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-75192542020-10-07 A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade Chen, Ivy X. Newcomer, Kathleen Pauken, Kristen E. Juneja, Vikram R. Naxerova, Kamila Wu, Michelle W. Pinter, Matthias Sen, Debattama R. Singer, Meromit Sharpe, Arlene H. Jain, Rakesh K. Proc Natl Acad Sci U S A Biological Sciences Immune checkpoint blockade (ICB) is efficacious in many diverse cancer types, but not all patients respond. It is important to understand the mechanisms driving resistance to these treatments and to identify predictive biomarkers of response to provide best treatment options for all patients. Here we introduce a resection and response-assessment approach for studying the tumor microenvironment before or shortly after treatment initiation to identify predictive biomarkers differentiating responders from nonresponders. Our approach builds on a bilateral tumor implantation technique in a murine metastatic breast cancer model (E0771) coupled with anti-PD-1 therapy. Using our model, we show that tumors from mice responding to ICB therapy had significantly higher CD8(+) T cells and fewer Gr1(+)CD11b(+) myeloid-derived suppressor cells (MDSCs) at early time points following therapy initiation. RNA sequencing on the intratumoral CD8(+) T cells identified the presence of T cell exhaustion pathways in nonresponding tumors and T cell activation in responding tumors. Strikingly, we showed that our derived response and resistance signatures significantly segregate patients by survival and associate with patient response to ICB. Furthermore, we identified decreased expression of CXCR3 in nonresponding mice and showed that tumors grown in Cxcr3(−/−) mice had an elevated resistance rate to anti-PD-1 treatment. Our findings suggest that the resection and response tumor model can be used to identify response and resistance biomarkers to ICB therapy and guide the use of combination therapy to further boost the antitumor efficacy of ICB. National Academy of Sciences 2020-09-22 2020-09-09 /pmc/articles/PMC7519254/ /pubmed/32907939 http://dx.doi.org/10.1073/pnas.2002806117 Text en Copyright © 2020 the Author(s). Published by PNAS. https://creativecommons.org/licenses/by-nc-nd/4.0/ https://creativecommons.org/licenses/by-nc-nd/4.0/This open access article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND) (https://creativecommons.org/licenses/by-nc-nd/4.0/) .
spellingShingle Biological Sciences
Chen, Ivy X.
Newcomer, Kathleen
Pauken, Kristen E.
Juneja, Vikram R.
Naxerova, Kamila
Wu, Michelle W.
Pinter, Matthias
Sen, Debattama R.
Singer, Meromit
Sharpe, Arlene H.
Jain, Rakesh K.
A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title_full A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title_fullStr A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title_full_unstemmed A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title_short A bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
title_sort bilateral tumor model identifies transcriptional programs associated with patient response to immune checkpoint blockade
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519254/
https://www.ncbi.nlm.nih.gov/pubmed/32907939
http://dx.doi.org/10.1073/pnas.2002806117
work_keys_str_mv AT chenivyx abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT newcomerkathleen abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT paukenkristene abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT junejavikramr abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT naxerovakamila abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT wumichellew abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT pintermatthias abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT sendebattamar abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT singermeromit abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT sharpearleneh abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT jainrakeshk abilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT chenivyx bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT newcomerkathleen bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT paukenkristene bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT junejavikramr bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT naxerovakamila bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT wumichellew bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT pintermatthias bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT sendebattamar bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT singermeromit bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT sharpearleneh bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade
AT jainrakeshk bilateraltumormodelidentifiestranscriptionalprogramsassociatedwithpatientresponsetoimmunecheckpointblockade