Cargando…

Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo

Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprisin...

Descripción completa

Detalles Bibliográficos
Autores principales: Redlingshöfer, Lisa, McLeod, Faye, Chen, Yu, Camus, Marine D., Burden, Jemima J., Palomer, Ernest, Briant, Kit, Dannhauser, Philip N., Salinas, Patricia C., Brodsky, Frances M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: National Academy of Sciences 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519287/
https://www.ncbi.nlm.nih.gov/pubmed/32907943
http://dx.doi.org/10.1073/pnas.2003662117
_version_ 1783587546853277696
author Redlingshöfer, Lisa
McLeod, Faye
Chen, Yu
Camus, Marine D.
Burden, Jemima J.
Palomer, Ernest
Briant, Kit
Dannhauser, Philip N.
Salinas, Patricia C.
Brodsky, Frances M.
author_facet Redlingshöfer, Lisa
McLeod, Faye
Chen, Yu
Camus, Marine D.
Burden, Jemima J.
Palomer, Ernest
Briant, Kit
Dannhauser, Philip N.
Salinas, Patricia C.
Brodsky, Frances M.
author_sort Redlingshöfer, Lisa
collection PubMed
description Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance.
format Online
Article
Text
id pubmed-7519287
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher National Academy of Sciences
record_format MEDLINE/PubMed
spelling pubmed-75192872020-10-07 Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo Redlingshöfer, Lisa McLeod, Faye Chen, Yu Camus, Marine D. Burden, Jemima J. Palomer, Ernest Briant, Kit Dannhauser, Philip N. Salinas, Patricia C. Brodsky, Frances M. Proc Natl Acad Sci U S A Biological Sciences Clathrin light chain (CLC) subunits in vertebrates are encoded by paralogous genes CLTA and CLTB, and both gene products are alternatively spliced in neurons. To understand how this CLC diversity influences neuronal clathrin function, we characterized the biophysical properties of clathrin comprising individual CLC variants for correlation with neuronal phenotypes of mice lacking either CLC-encoding gene. CLC splice variants differentially influenced clathrin knee conformation within assemblies, and clathrin with neuronal CLC mixtures was more effective in membrane deformation than clathrin with single neuronal isoforms nCLCa or nCLCb. Correspondingly, electrophysiological recordings revealed that neurons from mice lacking nCLCa or nCLCb were both defective in synaptic vesicle replenishment. Mice with only nCLCb had a reduced synaptic vesicle pool and impaired neurotransmission compared to WT mice, while nCLCa-only mice had increased synaptic vesicle numbers, restoring normal neurotransmission. These findings highlight differences between the CLC isoforms and show that isoform mixing influences tissue-specific clathrin activity in neurons, which requires their functional balance. National Academy of Sciences 2020-09-22 2020-09-09 /pmc/articles/PMC7519287/ /pubmed/32907943 http://dx.doi.org/10.1073/pnas.2003662117 Text en Copyright © 2020 the Author(s). Published by PNAS. http://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/This open access article is distributed under Creative Commons Attribution License 4.0 (CC BY) (http://creativecommons.org/licenses/by/4.0/) .
spellingShingle Biological Sciences
Redlingshöfer, Lisa
McLeod, Faye
Chen, Yu
Camus, Marine D.
Burden, Jemima J.
Palomer, Ernest
Briant, Kit
Dannhauser, Philip N.
Salinas, Patricia C.
Brodsky, Frances M.
Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title_full Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title_fullStr Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title_full_unstemmed Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title_short Clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
title_sort clathrin light chain diversity regulates membrane deformation in vitro and synaptic vesicle formation in vivo
topic Biological Sciences
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519287/
https://www.ncbi.nlm.nih.gov/pubmed/32907943
http://dx.doi.org/10.1073/pnas.2003662117
work_keys_str_mv AT redlingshoferlisa clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT mcleodfaye clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT chenyu clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT camusmarined clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT burdenjemimaj clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT palomerernest clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT briantkit clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT dannhauserphilipn clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT salinaspatriciac clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo
AT brodskyfrancesm clathrinlightchaindiversityregulatesmembranedeformationinvitroandsynapticvesicleformationinvivo