Cargando…
Artificial Intelligence and Its Effect on Dermatologists’ Accuracy in Dermoscopic Melanoma Image Classification: Web-Based Survey Study
BACKGROUND: Early detection of melanoma can be lifesaving but this remains a challenge. Recent diagnostic studies have revealed the superiority of artificial intelligence (AI) in classifying dermoscopic images of melanoma and nevi, concluding that these algorithms should assist a dermatologist’s dia...
Autores principales: | Maron, Roman C, Utikal, Jochen S, Hekler, Achim, Hauschild, Axel, Sattler, Elke, Sondermann, Wiebke, Haferkamp, Sebastian, Schilling, Bastian, Heppt, Markus V, Jansen, Philipp, Reinholz, Markus, Franklin, Cindy, Schmitt, Laurenz, Hartmann, Daniela, Krieghoff-Henning, Eva, Schmitt, Max, Weichenthal, Michael, von Kalle, Christof, Fröhling, Stefan, Brinker, Titus J |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519424/ https://www.ncbi.nlm.nih.gov/pubmed/32915161 http://dx.doi.org/10.2196/18091 |
Ejemplares similares
-
Hidden Variables in Deep Learning Digital Pathology and Their Potential to Cause Batch Effects: Prediction Model Study
por: Schmitt, Max, et al.
Publicado: (2021) -
Artificial Intelligence in Skin Cancer Diagnostics: The Patients' Perspective
por: Jutzi, Tanja B., et al.
Publicado: (2020) -
Integrating Patient Data Into Skin Cancer Classification Using Convolutional Neural Networks: Systematic Review
por: Höhn, Julia, et al.
Publicado: (2021) -
Effects of Label Noise on Deep Learning-Based Skin Cancer Classification
por: Hekler, Achim, et al.
Publicado: (2020) -
Reducing the Impact of Confounding Factors on Skin Cancer Classification via Image Segmentation: Technical Model Study
por: Maron, Roman C, et al.
Publicado: (2021)