Cargando…
A machine learning Automated Recommendation Tool for synthetic biology
Synthetic biology allows us to bioengineer cells to synthesize novel valuable molecules such as renewable biofuels or anticancer drugs. However, traditional synthetic biology approaches involve ad-hoc engineering practices, which lead to long development times. Here, we present the Automated Recomme...
Autores principales: | Radivojević, Tijana, Costello, Zak, Workman, Kenneth, Garcia Martin, Hector |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519645/ https://www.ncbi.nlm.nih.gov/pubmed/32978379 http://dx.doi.org/10.1038/s41467-020-18008-4 |
Ejemplares similares
-
A machine learning approach to predict metabolic pathway dynamics from time-series multiomics data
por: Costello, Zak, et al.
Publicado: (2018) -
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
por: Zhang, Jie, et al.
Publicado: (2020) -
MACAW: An Accessible
Tool for Molecular Embedding
and Inverse Molecular Design
por: Blay, Vincent, et al.
Publicado: (2022) -
BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale
por: Backman, Tyler W. H., et al.
Publicado: (2023) -
MantaID: a machine learning–based tool to automate the identification of biological database IDs
por: Zeng, Zhengpeng, et al.
Publicado: (2023)