Cargando…
Combining mechanistic and machine learning models for predictive engineering and optimization of tryptophan metabolism
Through advanced mechanistic modeling and the generation of large high-quality datasets, machine learning is becoming an integral part of understanding and engineering living systems. Here we show that mechanistic and machine learning models can be combined to enable accurate genotype-to-phenotype p...
Autores principales: | Zhang, Jie, Petersen, Søren D., Radivojevic, Tijana, Ramirez, Andrés, Pérez-Manríquez, Andrés, Abeliuk, Eduardo, Sánchez, Benjamín J., Costello, Zak, Chen, Yu, Fero, Michael J., Martin, Hector Garcia, Nielsen, Jens, Keasling, Jay D., Jensen, Michael K. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519671/ https://www.ncbi.nlm.nih.gov/pubmed/32978375 http://dx.doi.org/10.1038/s41467-020-17910-1 |
Ejemplares similares
-
A machine learning Automated Recommendation Tool for synthetic biology
por: Radivojević, Tijana, et al.
Publicado: (2020) -
BayFlux: A Bayesian method to quantify metabolic Fluxes and their uncertainty at the genome scale
por: Backman, Tyler W. H., et al.
Publicado: (2023) -
Engineering of synthetic, stress-responsive yeast promoters
por: Rajkumar, Arun S., et al.
Publicado: (2016) -
Mechanistic Insights into the Reaction of Chlorination of Tryptophan Catalyzed by Tryptophan 7-Halogenase
por: Karabencheva-Christova, Tatyana G., et al.
Publicado: (2017) -
Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer
por: Denby, Charles M., et al.
Publicado: (2018)