Cargando…

A data-driven medication score predicts 10-year mortality among aging adults

Health differences among the elderly and the role of medical treatments are topical issues in aging societies. We demonstrate the use of modern statistical learning methods to develop a data-driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging individuals....

Descripción completa

Detalles Bibliográficos
Autores principales: Häppölä, Paavo, Havulinna, Aki S., Tasa, Tõnis, Mars, Nina J., Perola, Markus, Kallela, Mikko, Milani, Lili, Koskinen, Seppo, Salomaa, Veikko, Neale, Benjamin M., Palotie, Aarno, Daly, Mark, Ripatti, Samuli
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519677/
https://www.ncbi.nlm.nih.gov/pubmed/32978407
http://dx.doi.org/10.1038/s41598-020-72045-z
_version_ 1783587617439219712
author Häppölä, Paavo
Havulinna, Aki S.
Tasa, Tõnis
Mars, Nina J.
Perola, Markus
Kallela, Mikko
Milani, Lili
Koskinen, Seppo
Salomaa, Veikko
Neale, Benjamin M.
Palotie, Aarno
Daly, Mark
Ripatti, Samuli
author_facet Häppölä, Paavo
Havulinna, Aki S.
Tasa, Tõnis
Mars, Nina J.
Perola, Markus
Kallela, Mikko
Milani, Lili
Koskinen, Seppo
Salomaa, Veikko
Neale, Benjamin M.
Palotie, Aarno
Daly, Mark
Ripatti, Samuli
author_sort Häppölä, Paavo
collection PubMed
description Health differences among the elderly and the role of medical treatments are topical issues in aging societies. We demonstrate the use of modern statistical learning methods to develop a data-driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging individuals. The resulting score was validated with 33,616 individuals from two fully independent datasets and it is strongly associated with all-cause mortality (HR 1.18 per point increase in score; 95% CI 1.14–1.22; p = 2.25e−16). When combined with Charlson comorbidity index, individuals with elevated medication score and comorbidity index had over six times higher risk (HR 6.30; 95% CI 3.84–10.3; AUC = 0.802) compared to individuals with a protective score profile. Alone, the medication score performs similarly to the Charlson comorbidity index and is associated with polygenic risk for coronary heart disease and type 2 diabetes.
format Online
Article
Text
id pubmed-7519677
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-75196772020-09-29 A data-driven medication score predicts 10-year mortality among aging adults Häppölä, Paavo Havulinna, Aki S. Tasa, Tõnis Mars, Nina J. Perola, Markus Kallela, Mikko Milani, Lili Koskinen, Seppo Salomaa, Veikko Neale, Benjamin M. Palotie, Aarno Daly, Mark Ripatti, Samuli Sci Rep Article Health differences among the elderly and the role of medical treatments are topical issues in aging societies. We demonstrate the use of modern statistical learning methods to develop a data-driven health measure based on 21 years of pharmacy purchase and mortality data of 12,047 aging individuals. The resulting score was validated with 33,616 individuals from two fully independent datasets and it is strongly associated with all-cause mortality (HR 1.18 per point increase in score; 95% CI 1.14–1.22; p = 2.25e−16). When combined with Charlson comorbidity index, individuals with elevated medication score and comorbidity index had over six times higher risk (HR 6.30; 95% CI 3.84–10.3; AUC = 0.802) compared to individuals with a protective score profile. Alone, the medication score performs similarly to the Charlson comorbidity index and is associated with polygenic risk for coronary heart disease and type 2 diabetes. Nature Publishing Group UK 2020-09-25 /pmc/articles/PMC7519677/ /pubmed/32978407 http://dx.doi.org/10.1038/s41598-020-72045-z Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Häppölä, Paavo
Havulinna, Aki S.
Tasa, Tõnis
Mars, Nina J.
Perola, Markus
Kallela, Mikko
Milani, Lili
Koskinen, Seppo
Salomaa, Veikko
Neale, Benjamin M.
Palotie, Aarno
Daly, Mark
Ripatti, Samuli
A data-driven medication score predicts 10-year mortality among aging adults
title A data-driven medication score predicts 10-year mortality among aging adults
title_full A data-driven medication score predicts 10-year mortality among aging adults
title_fullStr A data-driven medication score predicts 10-year mortality among aging adults
title_full_unstemmed A data-driven medication score predicts 10-year mortality among aging adults
title_short A data-driven medication score predicts 10-year mortality among aging adults
title_sort data-driven medication score predicts 10-year mortality among aging adults
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519677/
https://www.ncbi.nlm.nih.gov/pubmed/32978407
http://dx.doi.org/10.1038/s41598-020-72045-z
work_keys_str_mv AT happolapaavo adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT havulinnaakis adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT tasatonis adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT marsninaj adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT perolamarkus adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT kallelamikko adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT milanilili adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT koskinenseppo adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT salomaaveikko adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT nealebenjaminm adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT palotieaarno adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT dalymark adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT ripattisamuli adatadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT happolapaavo datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT havulinnaakis datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT tasatonis datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT marsninaj datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT perolamarkus datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT kallelamikko datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT milanilili datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT koskinenseppo datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT salomaaveikko datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT nealebenjaminm datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT palotieaarno datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT dalymark datadrivenmedicationscorepredicts10yearmortalityamongagingadults
AT ripattisamuli datadrivenmedicationscorepredicts10yearmortalityamongagingadults