Cargando…

CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes

Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell‐based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site‐speci...

Descripción completa

Detalles Bibliográficos
Autores principales: Ostrominski, John W., Yada, Ravi Chandra, Sato, Noriko, Klein, Michael, Blinova, Ksenia, Patel, Dakshesh, Valadez, Racquel, Palisoc, Maryknoll, Pittaluga, Stefania, Peng, Kah‐Whye, San, Hong, Lin, Yongshun, Basuli, Falguni, Zhang, Xiang, Swenson, Rolf E., Haigney, Mark, Choyke, Peter L., Zou, Jizhong, Boehm, Manfred, Hong, So Gun, Dunbar, Cynthia E.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519772/
https://www.ncbi.nlm.nih.gov/pubmed/32700830
http://dx.doi.org/10.1002/sctm.20-0019
_version_ 1783587638465265664
author Ostrominski, John W.
Yada, Ravi Chandra
Sato, Noriko
Klein, Michael
Blinova, Ksenia
Patel, Dakshesh
Valadez, Racquel
Palisoc, Maryknoll
Pittaluga, Stefania
Peng, Kah‐Whye
San, Hong
Lin, Yongshun
Basuli, Falguni
Zhang, Xiang
Swenson, Rolf E.
Haigney, Mark
Choyke, Peter L.
Zou, Jizhong
Boehm, Manfred
Hong, So Gun
Dunbar, Cynthia E.
author_facet Ostrominski, John W.
Yada, Ravi Chandra
Sato, Noriko
Klein, Michael
Blinova, Ksenia
Patel, Dakshesh
Valadez, Racquel
Palisoc, Maryknoll
Pittaluga, Stefania
Peng, Kah‐Whye
San, Hong
Lin, Yongshun
Basuli, Falguni
Zhang, Xiang
Swenson, Rolf E.
Haigney, Mark
Choyke, Peter L.
Zou, Jizhong
Boehm, Manfred
Hong, So Gun
Dunbar, Cynthia E.
author_sort Ostrominski, John W.
collection PubMed
description Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell‐based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site‐specific strategies achieving long‐term expression of reporter genes compatible with safe noninvasive imaging. In this study, the rhesus sodium/iodide symporter (NIS) gene was incorporated into rhesus macaque induced pluripotent stem cells (RhiPSCs) via CRISPR/Cas9. Cardiomyocytes derived from NIS‐RhiPSCs (NIS‐RhiPSC‐CMs) exhibited overall similar morphological and electrophysiological characteristics compared to parental control RhiPSC‐CMs at baseline and with exposure to physiological levels of sodium iodide. Mice were injected intramyocardially with 2 million NIS‐RhiPSC‐CMs immediately following myocardial infarction, and serial positron emission tomography/computed tomography was performed with (18)F‐tetrafluoroborate to monitor transplanted cells in vivo. NIS‐RhiPSC‐CMs could be detected until study conclusion at 8 to 10 weeks postinjection. This NIS‐based molecular imaging platform, with optimal safety and sensitivity characteristics, is primed for translation into large‐animal preclinical models and clinical trials.
format Online
Article
Text
id pubmed-7519772
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-75197722020-09-30 CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes Ostrominski, John W. Yada, Ravi Chandra Sato, Noriko Klein, Michael Blinova, Ksenia Patel, Dakshesh Valadez, Racquel Palisoc, Maryknoll Pittaluga, Stefania Peng, Kah‐Whye San, Hong Lin, Yongshun Basuli, Falguni Zhang, Xiang Swenson, Rolf E. Haigney, Mark Choyke, Peter L. Zou, Jizhong Boehm, Manfred Hong, So Gun Dunbar, Cynthia E. Stem Cells Transl Med Enabling Technologies for Cell‐based Clinical Translation Techniques that enable longitudinal tracking of cell fate after myocardial delivery are imperative for optimizing the efficacy of cell‐based cardiac therapies. However, these approaches have been underutilized in preclinical models and clinical trials, and there is considerable demand for site‐specific strategies achieving long‐term expression of reporter genes compatible with safe noninvasive imaging. In this study, the rhesus sodium/iodide symporter (NIS) gene was incorporated into rhesus macaque induced pluripotent stem cells (RhiPSCs) via CRISPR/Cas9. Cardiomyocytes derived from NIS‐RhiPSCs (NIS‐RhiPSC‐CMs) exhibited overall similar morphological and electrophysiological characteristics compared to parental control RhiPSC‐CMs at baseline and with exposure to physiological levels of sodium iodide. Mice were injected intramyocardially with 2 million NIS‐RhiPSC‐CMs immediately following myocardial infarction, and serial positron emission tomography/computed tomography was performed with (18)F‐tetrafluoroborate to monitor transplanted cells in vivo. NIS‐RhiPSC‐CMs could be detected until study conclusion at 8 to 10 weeks postinjection. This NIS‐based molecular imaging platform, with optimal safety and sensitivity characteristics, is primed for translation into large‐animal preclinical models and clinical trials. John Wiley & Sons, Inc. 2020-07-23 /pmc/articles/PMC7519772/ /pubmed/32700830 http://dx.doi.org/10.1002/sctm.20-0019 Text en © 2020 The Authors. STEM CELLS Translational Medicine published by Wiley Periodicals LLC on behalf of AlphaMed Press. This is an open access article under the terms of the http://creativecommons.org/licenses/by-nc-nd/4.0/ License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non‐commercial and no modifications or adaptations are made.
spellingShingle Enabling Technologies for Cell‐based Clinical Translation
Ostrominski, John W.
Yada, Ravi Chandra
Sato, Noriko
Klein, Michael
Blinova, Ksenia
Patel, Dakshesh
Valadez, Racquel
Palisoc, Maryknoll
Pittaluga, Stefania
Peng, Kah‐Whye
San, Hong
Lin, Yongshun
Basuli, Falguni
Zhang, Xiang
Swenson, Rolf E.
Haigney, Mark
Choyke, Peter L.
Zou, Jizhong
Boehm, Manfred
Hong, So Gun
Dunbar, Cynthia E.
CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title_full CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title_fullStr CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title_full_unstemmed CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title_short CRISPR/Cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
title_sort crispr/cas9‐mediated introduction of the sodium/iodide symporter gene enables noninvasive in vivo tracking of induced pluripotent stem cell‐derived cardiomyocytes
topic Enabling Technologies for Cell‐based Clinical Translation
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519772/
https://www.ncbi.nlm.nih.gov/pubmed/32700830
http://dx.doi.org/10.1002/sctm.20-0019
work_keys_str_mv AT ostrominskijohnw crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT yadaravichandra crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT satonoriko crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT kleinmichael crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT blinovaksenia crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT pateldakshesh crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT valadezracquel crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT palisocmaryknoll crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT pittalugastefania crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT pengkahwhye crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT sanhong crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT linyongshun crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT basulifalguni crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT zhangxiang crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT swensonrolfe crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT haigneymark crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT choykepeterl crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT zoujizhong crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT boehmmanfred crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT hongsogun crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes
AT dunbarcynthiae crisprcas9mediatedintroductionofthesodiumiodidesymportergeneenablesnoninvasiveinvivotrackingofinducedpluripotentstemcellderivedcardiomyocytes