Cargando…
Automatic identification of relevant genes from low-dimensional embeddings of single-cell RNA-seq data
MOTIVATION: Dimensionality reduction is a key step in the analysis of single-cell RNA-sequencing data. It produces a low-dimensional embedding for visualization and as a calculation base for downstream analysis. Nonlinear techniques are most suitable to handle the intrinsic complexity of large, hete...
Autores principales: | Angerer, Philipp, Fischer, David S, Theis, Fabian J, Scialdone, Antonio, Marr, Carsten |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520047/ https://www.ncbi.nlm.nih.gov/pubmed/32207520 http://dx.doi.org/10.1093/bioinformatics/btaa198 |
Ejemplares similares
-
MCA: Multiresolution Correlation Analysis, a graphical tool for subpopulation identification in single-cell gene expression data
por: Feigelman, Justin, et al.
Publicado: (2014) -
An automatic method for robust and fast cell detection in bright field images from high-throughput microscopy
por: Buggenthin, Felix, et al.
Publicado: (2013) -
BART-Seq: cost-effective massively parallelized targeted sequencing for genomics, transcriptomics, and single-cell analysis
por: Uzbas, Fatma, et al.
Publicado: (2019) -
SCANPY: large-scale single-cell gene expression data analysis
por: Wolf, F. Alexander, et al.
Publicado: (2018) -
A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography
por: Chlis, Nikolaos-Kosmas, et al.
Publicado: (2020)