Cargando…
Integrating biological knowledge and gene expression data using pathway-guided random forests: a benchmarking study
MOTIVATION: High-throughput technologies allow comprehensive characterization of individuals on many molecular levels. However, training computational models to predict disease status based on omics data is challenging. A promising solution is the integration of external knowledge about structural a...
Autores principales: | Seifert, Stephan, Gundlach, Sven, Junge, Olaf, Szymczak, Silke |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520048/ https://www.ncbi.nlm.nih.gov/pubmed/32399562 http://dx.doi.org/10.1093/bioinformatics/btaa483 |
Ejemplares similares
-
Surrogate minimal depth as an importance measure for variables in random forests
por: Seifert, Stephan, et al.
Publicado: (2019) -
Evaluation of variable selection methods for random forests and omics data sets
por: Degenhardt, Frauke, et al.
Publicado: (2017) -
A review on longitudinal data analysis with random forest
por: Hu, Jianchang, et al.
Publicado: (2023) -
Comparison of Markov Chain Monte Carlo Software for the Evolutionary Analysis of Y-Chromosomal Microsatellite Data
por: Gundlach, Sven, et al.
Publicado: (2019) -
Evaluation of single-nucleotide polymorphism imputation using random forests
por: Schwarz, Daniel F, et al.
Publicado: (2009)