Cargando…
Robust Asynchronous Stochastic Gradient-Push: Asymptotically Optimal and Network-Independent Performance for Strongly Convex Functions
We consider the standard model of distributed optimization of a sum of functions [Formula: see text] , where node i in a network holds the function f(i)(z). We allow for a harsh network model characterized by asynchronous updates, message delays, unpredictable message losses, and directed communicat...
Autores principales: | Spiridonoff, Artin, Olshevsky, Alex, Paschalidis, Ioannis Ch. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520166/ https://www.ncbi.nlm.nih.gov/pubmed/32989377 |
Ejemplares similares
-
Variable Smoothing for Convex Optimization Problems Using Stochastic Gradients
por: Boţ, Radu Ioan, et al.
Publicado: (2020) -
Convex and stochastic optimization
por: Bonnans, J Frédéric
Publicado: (2019) -
Convex and stochastic optimization /
por: Bonnans, J. F. (Joseph Frédéric), 1957-
Publicado: (2019) -
A Robust Learning Approach for Regression Models Based on Distributionally Robust Optimization
por: Chen, Ruidi, et al.
Publicado: (2018) -
Gradient Methods on Strongly Convex Feasible Sets and Optimal Control of Affine Systems
por: Veliov, V. M., et al.
Publicado: (2018)