Cargando…
Predicting biomarkers from classifier for liver metastasis of colorectal adenocarcinomas using machine learning models
BACKGROUND: Early diagnosis of liver metastasis is of great importance for enhancing the survival of colorectal adenocarcinoma (CAD) patients, and the combined use of a single biomarker in a classier model has shown great improvement in predicting the metastasis of several types of cancers. However,...
Autores principales: | Shuwen, Han, Xi, Yang, Qing, Zhou, Jing, Zhuang, Wei, Wu |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520257/ http://dx.doi.org/10.1002/cam4.3289 |
Ejemplares similares
-
Musashi2 as a novel predictive biomarker for liver metastasis and poor prognosis in colorectal cancer
por: Zong, Zhen, et al.
Publicado: (2016) -
Machine learning for the prediction of bone metastasis in patients with newly diagnosed thyroid cancer
por: Liu, Wen‐Cai, et al.
Publicado: (2021) -
Support vector machine classifier for prediction of the metastasis of colorectal cancer
por: Zhi, Jiajun, et al.
Publicado: (2018) -
Anterior wall adenocarcinoma of bladder with similar clinicopathological and prognostic characteristics as common bladder carcinomas should not be treated as or classified into urachal adenocarcinomas
por: Zhou, Yu‐Wen, et al.
Publicado: (2021) -
FOLFOX treatment response prediction in metastatic or recurrent colorectal cancer patients via machine learning algorithms
por: Lu, Wei, et al.
Publicado: (2020)