Cargando…
Mesenchymal stem cells‐derived and siRNAs‐encapsulated exosomes inhibit osteonecrosis of the femoral head
Osteonecrosis of the femoral head (ONFH) is a progressive, obstinate and disabling disease. At present, the treatment of ONFH is still a global medical problem. We aim to explore the role of bone mesenchymal stem cells (BMSCs)‐derived and siRNAs‐encapsulated exosomes (siRNAs‐encapsulated BMSCexos) i...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520260/ https://www.ncbi.nlm.nih.gov/pubmed/32749049 http://dx.doi.org/10.1111/jcmm.15395 |
Sumario: | Osteonecrosis of the femoral head (ONFH) is a progressive, obstinate and disabling disease. At present, the treatment of ONFH is still a global medical problem. We aim to explore the role of bone mesenchymal stem cells (BMSCs)‐derived and siRNAs‐encapsulated exosomes (siRNAs‐encapsulated BMSCexos) in ONFH. We first isolated BMSCexos and screened siRNAs of 6 ONFH‐related genes for siRNAs‐encapsulated BMSCexo. The expression of these 6 ONFH‐related genes in dexamethasone (DXM)‐treated MC3T3‐E1 cell, cell model of ONFH, was detected by RT‐qPCR and Western blot analysis. And then, we performed CCK‐8 assay, angiogenesis assay and HE staining analysis to test the promotion role of the siRNAs‐encapsulated BMSCexo for angiogenesis during ONFH repair. The results suggest that the obtained particles were BMSCexos. The screened effective siRNAs could effectively knock down their expression in VECs. Moreover, siRNAs‐encapsulated BMSCexo could effectively knock down the expression of these genes in VECs. In addition, siRNAs‐encapsulated BMSCexo promote angiogenesis during ONFH repair. In conclusion, we found siRNAs‐encapsulated BMSCexos could promote ONFH repair by angiogenesis, and indicated exosome as the new siRNA carrier is of great significance to improve the efficiency of RNAi. |
---|