Cargando…

Synchronization of human retinal pigment epithelial-1 cells in mitosis

Human retinal pigment epithelial-1 (RPE-1) cells are increasingly being used as a model to study mitosis because they represent a non-transformed alternative to cancer cell lines, such as HeLa cervical adenocarcinoma cells. However, the lack of an efficient method to synchronize RPE-1 cells in mitos...

Descripción completa

Detalles Bibliográficos
Autores principales: Scott, Stacey J., Suvarna, Kethan S., D'Avino, Pier Paolo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Company of Biologists Ltd 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520456/
https://www.ncbi.nlm.nih.gov/pubmed/32878943
http://dx.doi.org/10.1242/jcs.247940
Descripción
Sumario:Human retinal pigment epithelial-1 (RPE-1) cells are increasingly being used as a model to study mitosis because they represent a non-transformed alternative to cancer cell lines, such as HeLa cervical adenocarcinoma cells. However, the lack of an efficient method to synchronize RPE-1 cells in mitosis precludes their application for large-scale biochemical and proteomics assays. Here, we report a protocol to synchronize RPE-1 cells based on sequential treatments with the Cdk4 and Cdk6 inhibitor PD 0332991 (palbociclib) and the microtubule-depolymerizing drug nocodazole. With this method, the vast majority (80–90%) of RPE-1 cells arrested at prometaphase and exited mitosis synchronously after release from nocodazole. Moreover, the cells fully recovered and re-entered the cell cycle after the palbociclib–nocodazole block. Finally, we show that this protocol could be successfully employed for the characterization of the protein–protein interaction network of the kinetochore protein Ndc80 by immunoprecipitation coupled with mass spectrometry. This synchronization method significantly expands the versatility and applicability of RPE-1 cells to the study of cell division and might be applied to other cell lines that do not respond to treatments with DNA synthesis inhibitors.