Cargando…
Comparison between computed tomography and magnetic resonance imaging in clinical diagnosis and treatment of tibial platform fractures
BACKGROUND: Tibial plateau fracture is one of the common fracture types. It occurs mainly in teenagers and is usually caused by a fall. After the occurrence of fracture, knee swelling, pain, limited activity, etc. greatly affect the patient’s exercise habits and lifestyle. X-ray, computed tomography...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Baishideng Publishing Group Inc
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7520768/ https://www.ncbi.nlm.nih.gov/pubmed/33024764 http://dx.doi.org/10.12998/wjcc.v8.i18.4067 |
Sumario: | BACKGROUND: Tibial plateau fracture is one of the common fracture types. It occurs mainly in teenagers and is usually caused by a fall. After the occurrence of fracture, knee swelling, pain, limited activity, etc. greatly affect the patient’s exercise habits and lifestyle. X-ray, computed tomography (CT) and magnetic resonance imaging (MRI) were used in this examination. X-rays are relatively new and easy to operate. However, there are some errors in the observation of fracture collapse and fracture displacement. In recent years, CT and MRI have been actively used to diagnose various types of clinical fractures. They have more diagnostic power than X-ray film. However, some scholars believe that CT is also prone to errors in clinical application. The volume effect leads to missed diagnosis and misdiagnosis in some cases, while the multidirection scanning of MRI technology can effectively overcome the shortcomings of CT. To facilitate the selection of clinical examination regimens, this study further observed the diagnostic ability of these two regimens in the diagnosis of tibial plateau fractures. AIM: To explore the value of nuclear MRI and CT in the clinical diagnosis of tibial plateau fractures. METHODS: A total of 120 patients with tibial plateau fractures admitted from September 2017 to August 2019 were included. All patients were examined by nuclear MRI and CT scanning. The results were sent to senior physicians in our hospital to complete the diagnosis. RESULTS: Nuclear magnetic resonance showed the same effects as CT in four aspects: fracture displacement, bone defect, fracture site and fracture comminution. There was no significant difference in the score data (P > 0.05). Nuclear magnetic resonance and CT tended to be consistent in the B3, C2 and C3 fracture diagnosis coincidence rate, combined injury detection rate and fracture detection rate. The diagnostic coincidence rate of type B1, B2 and C1 fractures and the accuracy rate of overall fracture classification indicated that the MRI technique was significantly better than that of CT (P > 0.05). CONCLUSION: MRI and CT have good diagnostic typing in the diagnosis of tibial plateau fractures, but MRI is more accurate and may be preferred. |
---|