Cargando…
Recent Development of Machine Learning Methods in Microbial Phosphorylation Sites
A variety of protein post-translational modifications has been identified that control many cellular functions. Phosphorylation studies in mycobacterial organisms have shown critical importance in diverse biological processes, such as intercellular communication and cell division. Recent technical a...
Autores principales: | Rashid, Md. Mamunur, Shatabda, Swakkhar, Hasan, Md. Mehedi, Kurata, Hiroyuki |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Bentham Science Publishers
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521030/ https://www.ncbi.nlm.nih.gov/pubmed/33071613 http://dx.doi.org/10.2174/1389202921666200427210833 |
Ejemplares similares
-
Computational identification of microbial phosphorylation sites by the enhanced characteristics of sequence information
por: Hasan, Md. Mehedi, et al.
Publicado: (2019) -
Accurately Predicting Glutarylation Sites Using Sequential Bi-Peptide-Based Evolutionary Features
por: Arafat, Md. Easin, et al.
Publicado: (2020) -
A convolutional neural network based tool for predicting protein AMPylation sites from binary profile representation
por: Azim, Sayed Mehedi, et al.
Publicado: (2022) -
A convolution based computational approach towards DNA N6-methyladenine site identification and motif extraction in rice genome
por: Rahman, Chowdhury Rafeed, et al.
Publicado: (2021) -
GPSuc: Global Prediction of Generic and Species-specific Succinylation Sites by aggregating multiple sequence features
por: Hasan, Md. Mehedi, et al.
Publicado: (2018)