Cargando…

Low‐energy shock wave pretreatment recruit circulating endothelial progenitor cells to attenuate renal ischaemia reperfusion injury

Low‐energy shock wave (LESW) has been recognized as a promising non‐invasive intervention to prevent the organs or tissues against ischaemia reperfusion injury (IRI), whereas its effect on kidney injury is rarely explored. To investigate the protective role of pretreatment with LESW on renal IRI in...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Jingyu, Dou, Quanliang, Zhou, Changcheng, Zhou, Liuhua, Zhao, Feng, Xu, Luwei, Xu, Zheng, Ge, Yuzheng, Wu, Ran, Jia, Ruipeng
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521246/
https://www.ncbi.nlm.nih.gov/pubmed/32761803
http://dx.doi.org/10.1111/jcmm.15678
Descripción
Sumario:Low‐energy shock wave (LESW) has been recognized as a promising non‐invasive intervention to prevent the organs or tissues against ischaemia reperfusion injury (IRI), whereas its effect on kidney injury is rarely explored. To investigate the protective role of pretreatment with LESW on renal IRI in rats, animals were randomly divided into Sham, LESW, IRI and LESW + IRI groups. At 4, 12, 24 hours and 3 and 7 days after reperfusion, serum samples and renal tissues were harvested for performing the analysis of renal function, histopathology, immunohistochemistry, flow cytometry and Western blot, as well as enzyme‐linked immunosorbent assay. Moreover, circulating endothelial progenitor cells (EPCs) were isolated, labelled with fluorescent dye and injected by tail vein. The fluorescent signals of EPCs were detected using fluorescence microscope and in vivo imaging system to track the distribution of injected circulating EPCs. Results showed that pretreatment with LESW could significantly reduce kidney injury biomarkers, tubular damage, and cell apoptosis, and promote cell proliferation and vascularization in IRI kidneys. The renoprotective role of LESW pretreatment would be attributed to the remarkably increased EPCs in the treated kidneys, part of which were recruited from circulation through SDF‐1/CXCR7 pathway. In conclusion, pretreatment with LESW could increase the recruitment of circulating EPCs to attenuate and repair renal IRI.