Cargando…
Quantitative proteomics identified 3 oxidative phosphorylation genes with clinical prognostic significance in gastric cancer
The aim of the present study was to explore the underlying mechanisms involved in gastric cancer (GC) formation using data‐independent acquisition (DIA) quantitative proteomics analysis. We identified the differences in protein expression and related functions involved in biological metabolic proces...
Autores principales: | Su, Fei, Zhou, Fen‐fang, Zhang, Tao, Wang, Dan‐wen, Zhao, Da, Hou, Xiao‐ming, Feng, Mao‐hui |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521272/ https://www.ncbi.nlm.nih.gov/pubmed/32757436 http://dx.doi.org/10.1111/jcmm.15712 |
Ejemplares similares
-
Label-free quantitative proteomic analysis identifies CTNNB1 as a direct target of FOXP3 in gastric cancer cells
por: Pan, Du-Yi, et al.
Publicado: (2018) -
Label-free quantitative proteomic analysis identifies CTNNB1 as a direct target of FOXP3 in gastric cancer cells
por: Pan, Du-Yi, et al.
Publicado: (2018) -
Quantitative proteomics for identifying biomarkers for Rabies
por: Venugopal, Abhilash K, et al.
Publicado: (2013) -
A Quantitative Proteomic Analysis of Brassinosteroid-induced Protein Phosphorylation in Rice (Oryza sativa L.)
por: Hou, Yuxuan, et al.
Publicado: (2017) -
A Quantitative Proteomic Approach to Identify Significantly Altered Protein Networks in the Serum of Patients with Lymphangioleiomyomatosis (LAM)
por: Banville, Nessa, et al.
Publicado: (2014)