Cargando…

The microRNA miR‐134‐5p induces calcium deposition by inhibiting histone deacetylase 5 in vascular smooth muscle cells

Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR‐134‐5p potentiates inorganic phosphate (Pi)‐induced calcium deposition...

Descripción completa

Detalles Bibliográficos
Autores principales: Choe, Nakwon, Shin, Sera, Joung, Hosouk, Ryu, Juhee, Kim, Young‐Kook, Ahn, Youngkeun, Kook, Hyun, Kwon, Duk‐Hwa
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521311/
https://www.ncbi.nlm.nih.gov/pubmed/32783377
http://dx.doi.org/10.1111/jcmm.15670
Descripción
Sumario:Calcium deposition in vascular smooth muscle cells (VSMCs) is a form of ectopic ossification in blood vessels. It can result in rigidity of the vasculature and an increase in cardiac events. Here, we report that the microRNA miR‐134‐5p potentiates inorganic phosphate (Pi)‐induced calcium deposition in VSMCs by inhibiting histone deacetylase 5 (HDAC5). Using miRNA microarray analysis of Pi‐treated rat VSMCs, we first selected miR‐134‐5p for further evaluation. Quantitative RT‐PCR confirmed that miR‐134‐5p was increased in Pi‐treated A10 cells, a rat VSMC line. Transfection of miR‐134‐5p mimic potentiated the Pi‐induced increase in calcium contents. miR‐134‐5p increased the amounts of bone runt‐related transcription factor 2 (RUNX2) protein and bone morphogenic protein 2 (BMP2) mRNA in the presence of Pi but decreased the expression of osteoprotegerin (OPG). Bioinformatic analysis showed that the HDAC5 3′untranslated region (3′UTR) was one of the targets of miR‐134‐5p. The luciferase construct containing the 3′UTR of HDAC5 was down‐regulated by miR‐134‐5p mimic in a dose‐dependent manner in VSMCs. Overexpression of HDAC5 mitigated the calcium deposition induced by miR‐134‐5p. Our results suggest that a Pi‐induced increase of miR‐134‐5p may cause vascular calcification through repression of HDAC5.