Cargando…

Fibronectin 1 inhibits the apoptosis of human trophoblasts by activating the PI3K/Akt signaling pathway

The excessive apoptosis of human trophoblasts can cause pregnancy-related diseases. It has been reported that fibronectin 1 (FN1) is closely associated with the invasion of human trophoblasts. The aim of the present study was to examine the effects of FN1 on the apoptosis of human trophoblasts and t...

Descripción completa

Detalles Bibliográficos
Autores principales: Ji, Jinlong, Chen, Liping, Zhuang, Yanyan, Han, Yun, Tang, Weichun, Xia, Fei
Formato: Online Artículo Texto
Lenguaje:English
Publicado: D.A. Spandidos 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521556/
https://www.ncbi.nlm.nih.gov/pubmed/33000176
http://dx.doi.org/10.3892/ijmm.2020.4735
Descripción
Sumario:The excessive apoptosis of human trophoblasts can cause pregnancy-related diseases. It has been reported that fibronectin 1 (FN1) is closely associated with the invasion of human trophoblasts. The aim of the present study was to examine the effects of FN1 on the apoptosis of human trophoblasts and to investigate the underlying molecular mechanisms. It was found that FN1, a differentially expressed gene (DEG) in the GSE127170 dataset, was identified as the hub gene in a protein-protein interaction (PPI) network generated using the cytoHubba plug-in of Cytoscape software. The Metascape website was used to perform GO enrichment analysis, and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway database was used to perform KEGG pathway analysis. Experimental analyses revealed that FN1 expression was downregulated in the chorionic villus tissues of patients diagnosed with and mice subjected to spontaneous abortion (SA). CCK-8 and flow cytometric assays revealed that the knockdown of FN1 decreased the viability and promoted the apoptosis of JEG-3 and BeWo cells. In vivo experiments demonstrated that the knockdown of FN1 promoted the apoptosis of trophoblasts in the chorionic villus tissues obtained from mice subjected to SA, whereas FN1 overexpression increased cell viability and inhibited cell apoptosis. The protein levels of cleaved caspase-3 and Bax were increased by the silencing of FN1 and decreased by FN1 overexpression. The protein expression levels of Bcl-2, proliferating cell nuclear antigen (PCNA) and Ki67 were decreased by the silencing of FN1; however, the overexpression of FN1 increased these levels. The results of western blot analysis revealed that the knockdown of FN1 inhibited the PI3K/Akt signaling pathway, while the overexpression of FN1 activated the PI3K/Akt signaling pathway. Consistently, the apoptosis-inhibiting effect of FN1 overexpression was reversed by a PI3K/Akt signaling pathway inhibitor, and the apoptosis-promoting effect of FN1 silencing was reversed by a PI3K/Akt signaling pathway activator. On the whole, the findings of the present study demonstrate that the inhibition of FN1 induces the apoptosis of JEG-3 and BeWo cells, and the overexpression of FN1 inhibits cell apoptosis by activating the PI3K/Akt signaling pathway.