Cargando…
Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Society for Biochemistry and Molecular Biology
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521651/ https://www.ncbi.nlm.nih.gov/pubmed/31481471 http://dx.doi.org/10.1074/jbc.RA119.009811 |
_version_ | 1783588017500323840 |
---|---|
author | Chen, Joseph C. Luu, Amanda R. Wise, Nathan Angelis, Rolando De Agrawal, Vishal Mangini, Linley Vincelette, Jon Handyside, Britta Sterling, Harry Lo, Melanie J. Wong, Hio Galicia, Nicole Pacheco, Glenn Van Vleet, Jeremy Giaramita, Alexander Fong, Sylvia Roy, Sushmita M. Hague, Chuck Lawrence, Roger Bullens, Sherry Christianson, Terri M. d'Azzo, Alessandra Crawford, Brett E. Bunting, Stuart LeBowitz, Jonathan H. Yogalingam, Gouri |
author_facet | Chen, Joseph C. Luu, Amanda R. Wise, Nathan Angelis, Rolando De Agrawal, Vishal Mangini, Linley Vincelette, Jon Handyside, Britta Sterling, Harry Lo, Melanie J. Wong, Hio Galicia, Nicole Pacheco, Glenn Van Vleet, Jeremy Giaramita, Alexander Fong, Sylvia Roy, Sushmita M. Hague, Chuck Lawrence, Roger Bullens, Sherry Christianson, Terri M. d'Azzo, Alessandra Crawford, Brett E. Bunting, Stuart LeBowitz, Jonathan H. Yogalingam, Gouri |
author_sort | Chen, Joseph C. |
collection | PubMed |
description | Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human β-gal (rhβ-gal) produced in Chinese hamster ovary cells enabled direct and precise rhβ-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhβ-gal was sufficient for normalizing β-gal activity and mediating substrate clearance for several weeks. We found that rhβ-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor–mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhβ-gal (100 μg) resulted in broad bilateral biodistribution of rhβ-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhβ-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of β-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhβ-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches. |
format | Online Article Text |
id | pubmed-7521651 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American Society for Biochemistry and Molecular Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-75216512020-10-05 Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice Chen, Joseph C. Luu, Amanda R. Wise, Nathan Angelis, Rolando De Agrawal, Vishal Mangini, Linley Vincelette, Jon Handyside, Britta Sterling, Harry Lo, Melanie J. Wong, Hio Galicia, Nicole Pacheco, Glenn Van Vleet, Jeremy Giaramita, Alexander Fong, Sylvia Roy, Sushmita M. Hague, Chuck Lawrence, Roger Bullens, Sherry Christianson, Terri M. d'Azzo, Alessandra Crawford, Brett E. Bunting, Stuart LeBowitz, Jonathan H. Yogalingam, Gouri J Biol Chem Cell Biology Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human β-gal (rhβ-gal) produced in Chinese hamster ovary cells enabled direct and precise rhβ-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhβ-gal was sufficient for normalizing β-gal activity and mediating substrate clearance for several weeks. We found that rhβ-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor–mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhβ-gal (100 μg) resulted in broad bilateral biodistribution of rhβ-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhβ-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of β-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhβ-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches. American Society for Biochemistry and Molecular Biology 2020-09-25 2019-09-03 /pmc/articles/PMC7521651/ /pubmed/31481471 http://dx.doi.org/10.1074/jbc.RA119.009811 Text en © 2020 Chen et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) . |
spellingShingle | Cell Biology Chen, Joseph C. Luu, Amanda R. Wise, Nathan Angelis, Rolando De Agrawal, Vishal Mangini, Linley Vincelette, Jon Handyside, Britta Sterling, Harry Lo, Melanie J. Wong, Hio Galicia, Nicole Pacheco, Glenn Van Vleet, Jeremy Giaramita, Alexander Fong, Sylvia Roy, Sushmita M. Hague, Chuck Lawrence, Roger Bullens, Sherry Christianson, Terri M. d'Azzo, Alessandra Crawford, Brett E. Bunting, Stuart LeBowitz, Jonathan H. Yogalingam, Gouri Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title | Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title_full | Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title_fullStr | Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title_full_unstemmed | Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title_short | Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice |
title_sort | intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to gm1 gangliosidosis in mice |
topic | Cell Biology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521651/ https://www.ncbi.nlm.nih.gov/pubmed/31481471 http://dx.doi.org/10.1074/jbc.RA119.009811 |
work_keys_str_mv | AT chenjosephc intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT luuamandar intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT wisenathan intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT angelisrolandode intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT agrawalvishal intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT manginilinley intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT vincelettejon intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT handysidebritta intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT sterlingharry intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT lomelaniej intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT wonghio intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT galicianicole intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT pachecoglenn intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT vanvleetjeremy intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT giaramitaalexander intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT fongsylvia intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT roysushmitam intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT haguechuck intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT lawrenceroger intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT bullenssherry intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT christiansonterrim intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT dazzoalessandra intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT crawfordbrette intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT buntingstuart intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT lebowitzjonathanh intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice AT yogalingamgouri intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice |