Cargando…

Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice

Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy...

Descripción completa

Detalles Bibliográficos
Autores principales: Chen, Joseph C., Luu, Amanda R., Wise, Nathan, Angelis, Rolando De, Agrawal, Vishal, Mangini, Linley, Vincelette, Jon, Handyside, Britta, Sterling, Harry, Lo, Melanie J., Wong, Hio, Galicia, Nicole, Pacheco, Glenn, Van Vleet, Jeremy, Giaramita, Alexander, Fong, Sylvia, Roy, Sushmita M., Hague, Chuck, Lawrence, Roger, Bullens, Sherry, Christianson, Terri M., d'Azzo, Alessandra, Crawford, Brett E., Bunting, Stuart, LeBowitz, Jonathan H., Yogalingam, Gouri
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Society for Biochemistry and Molecular Biology 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521651/
https://www.ncbi.nlm.nih.gov/pubmed/31481471
http://dx.doi.org/10.1074/jbc.RA119.009811
_version_ 1783588017500323840
author Chen, Joseph C.
Luu, Amanda R.
Wise, Nathan
Angelis, Rolando De
Agrawal, Vishal
Mangini, Linley
Vincelette, Jon
Handyside, Britta
Sterling, Harry
Lo, Melanie J.
Wong, Hio
Galicia, Nicole
Pacheco, Glenn
Van Vleet, Jeremy
Giaramita, Alexander
Fong, Sylvia
Roy, Sushmita M.
Hague, Chuck
Lawrence, Roger
Bullens, Sherry
Christianson, Terri M.
d'Azzo, Alessandra
Crawford, Brett E.
Bunting, Stuart
LeBowitz, Jonathan H.
Yogalingam, Gouri
author_facet Chen, Joseph C.
Luu, Amanda R.
Wise, Nathan
Angelis, Rolando De
Agrawal, Vishal
Mangini, Linley
Vincelette, Jon
Handyside, Britta
Sterling, Harry
Lo, Melanie J.
Wong, Hio
Galicia, Nicole
Pacheco, Glenn
Van Vleet, Jeremy
Giaramita, Alexander
Fong, Sylvia
Roy, Sushmita M.
Hague, Chuck
Lawrence, Roger
Bullens, Sherry
Christianson, Terri M.
d'Azzo, Alessandra
Crawford, Brett E.
Bunting, Stuart
LeBowitz, Jonathan H.
Yogalingam, Gouri
author_sort Chen, Joseph C.
collection PubMed
description Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human β-gal (rhβ-gal) produced in Chinese hamster ovary cells enabled direct and precise rhβ-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhβ-gal was sufficient for normalizing β-gal activity and mediating substrate clearance for several weeks. We found that rhβ-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor–mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhβ-gal (100 μg) resulted in broad bilateral biodistribution of rhβ-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhβ-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of β-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhβ-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches.
format Online
Article
Text
id pubmed-7521651
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher American Society for Biochemistry and Molecular Biology
record_format MEDLINE/PubMed
spelling pubmed-75216512020-10-05 Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice Chen, Joseph C. Luu, Amanda R. Wise, Nathan Angelis, Rolando De Agrawal, Vishal Mangini, Linley Vincelette, Jon Handyside, Britta Sterling, Harry Lo, Melanie J. Wong, Hio Galicia, Nicole Pacheco, Glenn Van Vleet, Jeremy Giaramita, Alexander Fong, Sylvia Roy, Sushmita M. Hague, Chuck Lawrence, Roger Bullens, Sherry Christianson, Terri M. d'Azzo, Alessandra Crawford, Brett E. Bunting, Stuart LeBowitz, Jonathan H. Yogalingam, Gouri J Biol Chem Cell Biology Autosomal recessive mutations in the galactosidase β1 (GLB1) gene cause lysosomal β-gal deficiency, resulting in accumulation of galactose-containing substrates and onset of the progressive and fatal neurodegenerative lysosomal storage disease, GM1 gangliosidosis. Here, an enzyme replacement therapy (ERT) approach in fibroblasts from GM1 gangliosidosis patients with recombinant human β-gal (rhβ-gal) produced in Chinese hamster ovary cells enabled direct and precise rhβ-gal delivery to acidified lysosomes. A single, low dose (3 nm) of rhβ-gal was sufficient for normalizing β-gal activity and mediating substrate clearance for several weeks. We found that rhβ-gal uptake by the fibroblasts is dose-dependent and saturable and can be competitively inhibited by mannose 6-phosphate, suggesting cation-independent, mannose 6-phosphate receptor–mediated endocytosis from the cell surface. A single intracerebroventricularly (ICV) administered dose of rhβ-gal (100 μg) resulted in broad bilateral biodistribution of rhβ-gal to critical regions of pathology in a mouse model of GM1 gangliosidosis. Weekly ICV dosing of rhβ-gal for 8 weeks substantially reduced brain levels of ganglioside and oligosaccharide substrates and reversed well-established secondary neuropathology. Of note, unlike with the ERT approach, chronic lentivirus-mediated GLB1 overexpression in the GM1 gangliosidosis patient fibroblasts caused accumulation of a prelysosomal pool of β-gal, resulting in activation of the unfolded protein response and endoplasmic reticulum stress. This outcome was unsurprising in light of our in vitro biophysical findings for rhβ-gal, which include pH-dependent and concentration-dependent stability and dynamic self-association. Collectively, our results highlight that ICV-ERT is an effective therapeutic intervention for managing GM1 gangliosidosis potentially more safely than with gene therapy approaches. American Society for Biochemistry and Molecular Biology 2020-09-25 2019-09-03 /pmc/articles/PMC7521651/ /pubmed/31481471 http://dx.doi.org/10.1074/jbc.RA119.009811 Text en © 2020 Chen et al. Author's Choice—Final version open access under the terms of the Creative Commons CC-BY license (http://creativecommons.org/licenses/by/4.0) .
spellingShingle Cell Biology
Chen, Joseph C.
Luu, Amanda R.
Wise, Nathan
Angelis, Rolando De
Agrawal, Vishal
Mangini, Linley
Vincelette, Jon
Handyside, Britta
Sterling, Harry
Lo, Melanie J.
Wong, Hio
Galicia, Nicole
Pacheco, Glenn
Van Vleet, Jeremy
Giaramita, Alexander
Fong, Sylvia
Roy, Sushmita M.
Hague, Chuck
Lawrence, Roger
Bullens, Sherry
Christianson, Terri M.
d'Azzo, Alessandra
Crawford, Brett E.
Bunting, Stuart
LeBowitz, Jonathan H.
Yogalingam, Gouri
Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title_full Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title_fullStr Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title_full_unstemmed Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title_short Intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to GM1 gangliosidosis in mice
title_sort intracerebroventricular enzyme replacement therapy with β-galactosidase reverses brain pathologies due to gm1 gangliosidosis in mice
topic Cell Biology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521651/
https://www.ncbi.nlm.nih.gov/pubmed/31481471
http://dx.doi.org/10.1074/jbc.RA119.009811
work_keys_str_mv AT chenjosephc intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT luuamandar intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT wisenathan intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT angelisrolandode intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT agrawalvishal intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT manginilinley intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT vincelettejon intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT handysidebritta intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT sterlingharry intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT lomelaniej intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT wonghio intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT galicianicole intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT pachecoglenn intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT vanvleetjeremy intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT giaramitaalexander intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT fongsylvia intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT roysushmitam intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT haguechuck intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT lawrenceroger intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT bullenssherry intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT christiansonterrim intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT dazzoalessandra intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT crawfordbrette intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT buntingstuart intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT lebowitzjonathanh intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice
AT yogalingamgouri intracerebroventricularenzymereplacementtherapywithbgalactosidasereversesbrainpathologiesduetogm1gangliosidosisinmice