Cargando…
DeepHE: Accurately predicting human essential genes based on deep learning
Accurately predicting essential genes using computational methods can greatly reduce the effort in finding them via wet experiments at both time and resource scales, and further accelerate the process of drug discovery. Several computational methods have been proposed for predicting essential genes...
Autores principales: | Zhang, Xue, Xiao, Wangxin, Xiao, Weijia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521708/ https://www.ncbi.nlm.nih.gov/pubmed/32936825 http://dx.doi.org/10.1371/journal.pcbi.1008229 |
Ejemplares similares
-
DeepH-DTA: Deep Learning for Predicting Drug-Target Interactions: A Case Study of COVID-19 Drug Repurposing
Publicado: (2020) -
DeephESC 2.0: Deep Generative Multi Adversarial Networks for improving the classification of hESC
por: Theagarajan, Rajkumar, et al.
Publicado: (2019) -
DeepH&M: Estimating single-CpG hydroxymethylation and methylation levels from enrichment and restriction enzyme sequencing methods
por: He, Yu, et al.
Publicado: (2020) -
Predicting essential proteins by integrating orthology, gene expressions, and PPI networks
por: Zhang, Xue, et al.
Publicado: (2018) -
Accurate Physical Property Predictions via Deep Learning
por: Hou, Yuanyuan, et al.
Publicado: (2022)