Cargando…
A spatiotemporal comparison of length-at-age in the coral reef fish Acanthurus nigrofuscus between marine reserves and fished reefs
Quantitative assessments of the capacity of marine reserves to restore historical fish body-size distributions require extensive repeated sampling to map the phenotypic responses of target populations to protection. However, the “no take” status of marine reserves oftentimes precludes repeated sampl...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521754/ https://www.ncbi.nlm.nih.gov/pubmed/32986752 http://dx.doi.org/10.1371/journal.pone.0239842 |
Sumario: | Quantitative assessments of the capacity of marine reserves to restore historical fish body-size distributions require extensive repeated sampling to map the phenotypic responses of target populations to protection. However, the “no take” status of marine reserves oftentimes precludes repeated sampling within their borders and, as a result, our current understanding of the capacity of marine reserves to restore historical body-size distributions remains almost entirely reliant on independent, static visual surveys. To overcome this challenge, we promote the application of a traditional fisheries tool known as a “back-calculation”, which allows for the estimation of fish body lengths from otolith annuli distances. This practical application was pursued in this study, using data collected in five marine reserves and adjacent fished reefs in the Philippines, to investigate spatiotemporal disparities in length-at-age of the brown surgeonfish, Acanthurus nigrofuscus. The spatial component of our analyses revealed that 1) A. nigrofuscus were phenotypically similar between marine reserves and fished reefs during their early life history; 2) marine reserve and fished reef populations diverged into significantly different length-at-age morphs between ages three and six, in which protected fish were predominantly larger than conspecifics in fished reefs; and 3) A. nigrofuscus returned to a state of general phenotypic similarity during later life. The temporal component of our analyses revealed that younger generations of A. nigrofuscus exhibited significant, positive year effects that were maintained until age eight, indicating that, within the significant age cohorts, younger generations were significantly larger than older generations. |
---|