Cargando…

Discovery and Functional Prediction of Long Non-Coding RNAs Common to Ischemic Stroke and Myocardial Infarction

OBJECTIVE: Ischemic stroke and myocardial infarction are 2 of the leading causes of mortality. Both conditions are caused by arterial occlusion, resulting in ischemic necrosis of the cells in the cortex and heart. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleoti...

Descripción completa

Detalles Bibliográficos
Autores principales: Song, Juhyun, Kim, Young-Kook
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Korean Society of Lipidology and Atherosclerosis 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521976/
https://www.ncbi.nlm.nih.gov/pubmed/33024736
http://dx.doi.org/10.12997/jla.2020.9.3.449
Descripción
Sumario:OBJECTIVE: Ischemic stroke and myocardial infarction are 2 of the leading causes of mortality. Both conditions are caused by arterial occlusion, resulting in ischemic necrosis of the cells in the cortex and heart. Long non-coding RNAs (lncRNAs) are a group of non-coding RNAs longer than 200 nucleotides without protein-coding potential. Thousands of lncRNAs have been identified but their involvement in ischemic stroke and myocardial infarction has not been studied extensively. Therefore, this study aimed to identify the role of lncRNAs, particularly those that are commonly altered in these two ischemic injuries. METHODS: We combined diverse RNA sequencing data obtained from public databases and performed extensive bioinformatics analyses to determine reliable lncRNAs commonly identified from these datasets. Using sequence analysis, we also detected the lncRNAs that may act as microRNA (miRNA) regulators. RESULTS: We found several altered lncRNAs that were common in ischemic stroke and myocardial infarction models. Some of these lncRNAs, including zinc finger NFX1-type containing 1 antisense RNA 1 and small nucleolar RNA host gene 1, were previously reported to be involved in the pathogenesis of each of these models. Interestingly, several lncRNAs had binding sites for miRNAs that were previously reported to be involved in the hypoxic response, suggesting the possible role of these lncRNAs as regulators in ischemic responses. CONCLUSION: The lncRNAs identified in this study will be useful in determining the regulatory networks in ischemic stroke and myocardial infarction and in identifying potential specific markers for each of these ischemic diseases.