_version_ 1783588087101652992
author Hallgrímsson, Benedikt
Aponte, J. David
Katz, David C.
Bannister, Jordan J.
Riccardi, Sheri L.
Mahasuwan, Nick
McInnes, Brenda L.
Ferrara, Tracey M.
Lipman, Danika M.
Neves, Amanda B.
Spitzmacher, Jared A. J.
Larson, Jacinda R.
Bellus, Gary A.
Pham, Anh M.
Aboujaoude, Elias
Benke, Timothy A.
Chatfield, Kathryn C.
Davis, Shanlee M.
Elias, Ellen R.
Enzenauer, Robert W.
French, Brooke M.
Pickler, Laura L.
Shieh, Joseph T. C.
Slavotinek, Anne
Harrop, A. Robertson
Innes, A. Micheil
McCandless, Shawn E.
McCourt, Emily A.
Meeks, Naomi J. L.
Tartaglia, Nicole R.
Tsai, Anne C.-H.
Wyse, J. Patrick H.
Bernstein, Jonathan A.
Sanchez-Lara, Pedro A.
Forkert, Nils D.
Bernier, Francois P.
Spritz, Richard A.
Klein, Ophir D.
author_facet Hallgrímsson, Benedikt
Aponte, J. David
Katz, David C.
Bannister, Jordan J.
Riccardi, Sheri L.
Mahasuwan, Nick
McInnes, Brenda L.
Ferrara, Tracey M.
Lipman, Danika M.
Neves, Amanda B.
Spitzmacher, Jared A. J.
Larson, Jacinda R.
Bellus, Gary A.
Pham, Anh M.
Aboujaoude, Elias
Benke, Timothy A.
Chatfield, Kathryn C.
Davis, Shanlee M.
Elias, Ellen R.
Enzenauer, Robert W.
French, Brooke M.
Pickler, Laura L.
Shieh, Joseph T. C.
Slavotinek, Anne
Harrop, A. Robertson
Innes, A. Micheil
McCandless, Shawn E.
McCourt, Emily A.
Meeks, Naomi J. L.
Tartaglia, Nicole R.
Tsai, Anne C.-H.
Wyse, J. Patrick H.
Bernstein, Jonathan A.
Sanchez-Lara, Pedro A.
Forkert, Nils D.
Bernier, Francois P.
Spritz, Richard A.
Klein, Ophir D.
author_sort Hallgrímsson, Benedikt
collection PubMed
description PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30–40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (3D) facial images of 7057 subjects: 3327 with 396 different syndromes, 727 of their relatives, and 3003 unrelated, unaffected subjects. We developed and tested machine learning and parametric approaches to automated syndrome diagnosis using 3D facial images. RESULTS: Unrelated, unaffected subjects were correctly classified with 96% accuracy. Considering both syndromic and unrelated, unaffected subjects together, balanced accuracy was 73% and mean sensitivity 49%. Excluding unrelated, unaffected subjects substantially improved both balanced accuracy (78.1%) and sensitivity (56.9%) of syndrome diagnosis. The best predictors of classification accuracy were phenotypic severity and facial distinctiveness of syndromes. Surprisingly, unaffected relatives of syndromic subjects were frequently classified as syndromic, often to the syndrome of their affected relative. CONCLUSION: Deep phenotyping by quantitative 3D facial imaging has considerable potential to facilitate syndrome diagnosis. Furthermore, 3D facial imaging of “unaffected” relatives may identify unrecognized cases or may reveal novel examples of semidominant inheritance.
format Online
Article
Text
id pubmed-7521994
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group US
record_format MEDLINE/PubMed
spelling pubmed-75219942020-10-14 Automated syndrome diagnosis by three-dimensional facial imaging Hallgrímsson, Benedikt Aponte, J. David Katz, David C. Bannister, Jordan J. Riccardi, Sheri L. Mahasuwan, Nick McInnes, Brenda L. Ferrara, Tracey M. Lipman, Danika M. Neves, Amanda B. Spitzmacher, Jared A. J. Larson, Jacinda R. Bellus, Gary A. Pham, Anh M. Aboujaoude, Elias Benke, Timothy A. Chatfield, Kathryn C. Davis, Shanlee M. Elias, Ellen R. Enzenauer, Robert W. French, Brooke M. Pickler, Laura L. Shieh, Joseph T. C. Slavotinek, Anne Harrop, A. Robertson Innes, A. Micheil McCandless, Shawn E. McCourt, Emily A. Meeks, Naomi J. L. Tartaglia, Nicole R. Tsai, Anne C.-H. Wyse, J. Patrick H. Bernstein, Jonathan A. Sanchez-Lara, Pedro A. Forkert, Nils D. Bernier, Francois P. Spritz, Richard A. Klein, Ophir D. Genet Med Article PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30–40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (3D) facial images of 7057 subjects: 3327 with 396 different syndromes, 727 of their relatives, and 3003 unrelated, unaffected subjects. We developed and tested machine learning and parametric approaches to automated syndrome diagnosis using 3D facial images. RESULTS: Unrelated, unaffected subjects were correctly classified with 96% accuracy. Considering both syndromic and unrelated, unaffected subjects together, balanced accuracy was 73% and mean sensitivity 49%. Excluding unrelated, unaffected subjects substantially improved both balanced accuracy (78.1%) and sensitivity (56.9%) of syndrome diagnosis. The best predictors of classification accuracy were phenotypic severity and facial distinctiveness of syndromes. Surprisingly, unaffected relatives of syndromic subjects were frequently classified as syndromic, often to the syndrome of their affected relative. CONCLUSION: Deep phenotyping by quantitative 3D facial imaging has considerable potential to facilitate syndrome diagnosis. Furthermore, 3D facial imaging of “unaffected” relatives may identify unrecognized cases or may reveal novel examples of semidominant inheritance. Nature Publishing Group US 2020-06-01 2020 /pmc/articles/PMC7521994/ /pubmed/32475986 http://dx.doi.org/10.1038/s41436-020-0845-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Hallgrímsson, Benedikt
Aponte, J. David
Katz, David C.
Bannister, Jordan J.
Riccardi, Sheri L.
Mahasuwan, Nick
McInnes, Brenda L.
Ferrara, Tracey M.
Lipman, Danika M.
Neves, Amanda B.
Spitzmacher, Jared A. J.
Larson, Jacinda R.
Bellus, Gary A.
Pham, Anh M.
Aboujaoude, Elias
Benke, Timothy A.
Chatfield, Kathryn C.
Davis, Shanlee M.
Elias, Ellen R.
Enzenauer, Robert W.
French, Brooke M.
Pickler, Laura L.
Shieh, Joseph T. C.
Slavotinek, Anne
Harrop, A. Robertson
Innes, A. Micheil
McCandless, Shawn E.
McCourt, Emily A.
Meeks, Naomi J. L.
Tartaglia, Nicole R.
Tsai, Anne C.-H.
Wyse, J. Patrick H.
Bernstein, Jonathan A.
Sanchez-Lara, Pedro A.
Forkert, Nils D.
Bernier, Francois P.
Spritz, Richard A.
Klein, Ophir D.
Automated syndrome diagnosis by three-dimensional facial imaging
title Automated syndrome diagnosis by three-dimensional facial imaging
title_full Automated syndrome diagnosis by three-dimensional facial imaging
title_fullStr Automated syndrome diagnosis by three-dimensional facial imaging
title_full_unstemmed Automated syndrome diagnosis by three-dimensional facial imaging
title_short Automated syndrome diagnosis by three-dimensional facial imaging
title_sort automated syndrome diagnosis by three-dimensional facial imaging
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521994/
https://www.ncbi.nlm.nih.gov/pubmed/32475986
http://dx.doi.org/10.1038/s41436-020-0845-y
work_keys_str_mv AT hallgrimssonbenedikt automatedsyndromediagnosisbythreedimensionalfacialimaging
AT apontejdavid automatedsyndromediagnosisbythreedimensionalfacialimaging
AT katzdavidc automatedsyndromediagnosisbythreedimensionalfacialimaging
AT bannisterjordanj automatedsyndromediagnosisbythreedimensionalfacialimaging
AT riccardisheril automatedsyndromediagnosisbythreedimensionalfacialimaging
AT mahasuwannick automatedsyndromediagnosisbythreedimensionalfacialimaging
AT mcinnesbrendal automatedsyndromediagnosisbythreedimensionalfacialimaging
AT ferraratraceym automatedsyndromediagnosisbythreedimensionalfacialimaging
AT lipmandanikam automatedsyndromediagnosisbythreedimensionalfacialimaging
AT nevesamandab automatedsyndromediagnosisbythreedimensionalfacialimaging
AT spitzmacherjaredaj automatedsyndromediagnosisbythreedimensionalfacialimaging
AT larsonjacindar automatedsyndromediagnosisbythreedimensionalfacialimaging
AT bellusgarya automatedsyndromediagnosisbythreedimensionalfacialimaging
AT phamanhm automatedsyndromediagnosisbythreedimensionalfacialimaging
AT aboujaoudeelias automatedsyndromediagnosisbythreedimensionalfacialimaging
AT benketimothya automatedsyndromediagnosisbythreedimensionalfacialimaging
AT chatfieldkathrync automatedsyndromediagnosisbythreedimensionalfacialimaging
AT davisshanleem automatedsyndromediagnosisbythreedimensionalfacialimaging
AT eliasellenr automatedsyndromediagnosisbythreedimensionalfacialimaging
AT enzenauerrobertw automatedsyndromediagnosisbythreedimensionalfacialimaging
AT frenchbrookem automatedsyndromediagnosisbythreedimensionalfacialimaging
AT picklerlaural automatedsyndromediagnosisbythreedimensionalfacialimaging
AT shiehjosephtc automatedsyndromediagnosisbythreedimensionalfacialimaging
AT slavotinekanne automatedsyndromediagnosisbythreedimensionalfacialimaging
AT harroparobertson automatedsyndromediagnosisbythreedimensionalfacialimaging
AT innesamicheil automatedsyndromediagnosisbythreedimensionalfacialimaging
AT mccandlessshawne automatedsyndromediagnosisbythreedimensionalfacialimaging
AT mccourtemilya automatedsyndromediagnosisbythreedimensionalfacialimaging
AT meeksnaomijl automatedsyndromediagnosisbythreedimensionalfacialimaging
AT tartaglianicoler automatedsyndromediagnosisbythreedimensionalfacialimaging
AT tsaiannech automatedsyndromediagnosisbythreedimensionalfacialimaging
AT wysejpatrickh automatedsyndromediagnosisbythreedimensionalfacialimaging
AT bernsteinjonathana automatedsyndromediagnosisbythreedimensionalfacialimaging
AT sanchezlarapedroa automatedsyndromediagnosisbythreedimensionalfacialimaging
AT forkertnilsd automatedsyndromediagnosisbythreedimensionalfacialimaging
AT bernierfrancoisp automatedsyndromediagnosisbythreedimensionalfacialimaging
AT spritzricharda automatedsyndromediagnosisbythreedimensionalfacialimaging
AT kleinophird automatedsyndromediagnosisbythreedimensionalfacialimaging