Cargando…
Automated syndrome diagnosis by three-dimensional facial imaging
PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30–40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group US
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521994/ https://www.ncbi.nlm.nih.gov/pubmed/32475986 http://dx.doi.org/10.1038/s41436-020-0845-y |
_version_ | 1783588087101652992 |
---|---|
author | Hallgrímsson, Benedikt Aponte, J. David Katz, David C. Bannister, Jordan J. Riccardi, Sheri L. Mahasuwan, Nick McInnes, Brenda L. Ferrara, Tracey M. Lipman, Danika M. Neves, Amanda B. Spitzmacher, Jared A. J. Larson, Jacinda R. Bellus, Gary A. Pham, Anh M. Aboujaoude, Elias Benke, Timothy A. Chatfield, Kathryn C. Davis, Shanlee M. Elias, Ellen R. Enzenauer, Robert W. French, Brooke M. Pickler, Laura L. Shieh, Joseph T. C. Slavotinek, Anne Harrop, A. Robertson Innes, A. Micheil McCandless, Shawn E. McCourt, Emily A. Meeks, Naomi J. L. Tartaglia, Nicole R. Tsai, Anne C.-H. Wyse, J. Patrick H. Bernstein, Jonathan A. Sanchez-Lara, Pedro A. Forkert, Nils D. Bernier, Francois P. Spritz, Richard A. Klein, Ophir D. |
author_facet | Hallgrímsson, Benedikt Aponte, J. David Katz, David C. Bannister, Jordan J. Riccardi, Sheri L. Mahasuwan, Nick McInnes, Brenda L. Ferrara, Tracey M. Lipman, Danika M. Neves, Amanda B. Spitzmacher, Jared A. J. Larson, Jacinda R. Bellus, Gary A. Pham, Anh M. Aboujaoude, Elias Benke, Timothy A. Chatfield, Kathryn C. Davis, Shanlee M. Elias, Ellen R. Enzenauer, Robert W. French, Brooke M. Pickler, Laura L. Shieh, Joseph T. C. Slavotinek, Anne Harrop, A. Robertson Innes, A. Micheil McCandless, Shawn E. McCourt, Emily A. Meeks, Naomi J. L. Tartaglia, Nicole R. Tsai, Anne C.-H. Wyse, J. Patrick H. Bernstein, Jonathan A. Sanchez-Lara, Pedro A. Forkert, Nils D. Bernier, Francois P. Spritz, Richard A. Klein, Ophir D. |
author_sort | Hallgrímsson, Benedikt |
collection | PubMed |
description | PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30–40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (3D) facial images of 7057 subjects: 3327 with 396 different syndromes, 727 of their relatives, and 3003 unrelated, unaffected subjects. We developed and tested machine learning and parametric approaches to automated syndrome diagnosis using 3D facial images. RESULTS: Unrelated, unaffected subjects were correctly classified with 96% accuracy. Considering both syndromic and unrelated, unaffected subjects together, balanced accuracy was 73% and mean sensitivity 49%. Excluding unrelated, unaffected subjects substantially improved both balanced accuracy (78.1%) and sensitivity (56.9%) of syndrome diagnosis. The best predictors of classification accuracy were phenotypic severity and facial distinctiveness of syndromes. Surprisingly, unaffected relatives of syndromic subjects were frequently classified as syndromic, often to the syndrome of their affected relative. CONCLUSION: Deep phenotyping by quantitative 3D facial imaging has considerable potential to facilitate syndrome diagnosis. Furthermore, 3D facial imaging of “unaffected” relatives may identify unrecognized cases or may reveal novel examples of semidominant inheritance. |
format | Online Article Text |
id | pubmed-7521994 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group US |
record_format | MEDLINE/PubMed |
spelling | pubmed-75219942020-10-14 Automated syndrome diagnosis by three-dimensional facial imaging Hallgrímsson, Benedikt Aponte, J. David Katz, David C. Bannister, Jordan J. Riccardi, Sheri L. Mahasuwan, Nick McInnes, Brenda L. Ferrara, Tracey M. Lipman, Danika M. Neves, Amanda B. Spitzmacher, Jared A. J. Larson, Jacinda R. Bellus, Gary A. Pham, Anh M. Aboujaoude, Elias Benke, Timothy A. Chatfield, Kathryn C. Davis, Shanlee M. Elias, Ellen R. Enzenauer, Robert W. French, Brooke M. Pickler, Laura L. Shieh, Joseph T. C. Slavotinek, Anne Harrop, A. Robertson Innes, A. Micheil McCandless, Shawn E. McCourt, Emily A. Meeks, Naomi J. L. Tartaglia, Nicole R. Tsai, Anne C.-H. Wyse, J. Patrick H. Bernstein, Jonathan A. Sanchez-Lara, Pedro A. Forkert, Nils D. Bernier, Francois P. Spritz, Richard A. Klein, Ophir D. Genet Med Article PURPOSE: Deep phenotyping is an emerging trend in precision medicine for genetic disease. The shape of the face is affected in 30–40% of known genetic syndromes. Here, we determine whether syndromes can be diagnosed from 3D images of human faces. METHODS: We analyzed variation in three-dimensional (3D) facial images of 7057 subjects: 3327 with 396 different syndromes, 727 of their relatives, and 3003 unrelated, unaffected subjects. We developed and tested machine learning and parametric approaches to automated syndrome diagnosis using 3D facial images. RESULTS: Unrelated, unaffected subjects were correctly classified with 96% accuracy. Considering both syndromic and unrelated, unaffected subjects together, balanced accuracy was 73% and mean sensitivity 49%. Excluding unrelated, unaffected subjects substantially improved both balanced accuracy (78.1%) and sensitivity (56.9%) of syndrome diagnosis. The best predictors of classification accuracy were phenotypic severity and facial distinctiveness of syndromes. Surprisingly, unaffected relatives of syndromic subjects were frequently classified as syndromic, often to the syndrome of their affected relative. CONCLUSION: Deep phenotyping by quantitative 3D facial imaging has considerable potential to facilitate syndrome diagnosis. Furthermore, 3D facial imaging of “unaffected” relatives may identify unrecognized cases or may reveal novel examples of semidominant inheritance. Nature Publishing Group US 2020-06-01 2020 /pmc/articles/PMC7521994/ /pubmed/32475986 http://dx.doi.org/10.1038/s41436-020-0845-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Hallgrímsson, Benedikt Aponte, J. David Katz, David C. Bannister, Jordan J. Riccardi, Sheri L. Mahasuwan, Nick McInnes, Brenda L. Ferrara, Tracey M. Lipman, Danika M. Neves, Amanda B. Spitzmacher, Jared A. J. Larson, Jacinda R. Bellus, Gary A. Pham, Anh M. Aboujaoude, Elias Benke, Timothy A. Chatfield, Kathryn C. Davis, Shanlee M. Elias, Ellen R. Enzenauer, Robert W. French, Brooke M. Pickler, Laura L. Shieh, Joseph T. C. Slavotinek, Anne Harrop, A. Robertson Innes, A. Micheil McCandless, Shawn E. McCourt, Emily A. Meeks, Naomi J. L. Tartaglia, Nicole R. Tsai, Anne C.-H. Wyse, J. Patrick H. Bernstein, Jonathan A. Sanchez-Lara, Pedro A. Forkert, Nils D. Bernier, Francois P. Spritz, Richard A. Klein, Ophir D. Automated syndrome diagnosis by three-dimensional facial imaging |
title | Automated syndrome diagnosis by three-dimensional facial imaging |
title_full | Automated syndrome diagnosis by three-dimensional facial imaging |
title_fullStr | Automated syndrome diagnosis by three-dimensional facial imaging |
title_full_unstemmed | Automated syndrome diagnosis by three-dimensional facial imaging |
title_short | Automated syndrome diagnosis by three-dimensional facial imaging |
title_sort | automated syndrome diagnosis by three-dimensional facial imaging |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521994/ https://www.ncbi.nlm.nih.gov/pubmed/32475986 http://dx.doi.org/10.1038/s41436-020-0845-y |
work_keys_str_mv | AT hallgrimssonbenedikt automatedsyndromediagnosisbythreedimensionalfacialimaging AT apontejdavid automatedsyndromediagnosisbythreedimensionalfacialimaging AT katzdavidc automatedsyndromediagnosisbythreedimensionalfacialimaging AT bannisterjordanj automatedsyndromediagnosisbythreedimensionalfacialimaging AT riccardisheril automatedsyndromediagnosisbythreedimensionalfacialimaging AT mahasuwannick automatedsyndromediagnosisbythreedimensionalfacialimaging AT mcinnesbrendal automatedsyndromediagnosisbythreedimensionalfacialimaging AT ferraratraceym automatedsyndromediagnosisbythreedimensionalfacialimaging AT lipmandanikam automatedsyndromediagnosisbythreedimensionalfacialimaging AT nevesamandab automatedsyndromediagnosisbythreedimensionalfacialimaging AT spitzmacherjaredaj automatedsyndromediagnosisbythreedimensionalfacialimaging AT larsonjacindar automatedsyndromediagnosisbythreedimensionalfacialimaging AT bellusgarya automatedsyndromediagnosisbythreedimensionalfacialimaging AT phamanhm automatedsyndromediagnosisbythreedimensionalfacialimaging AT aboujaoudeelias automatedsyndromediagnosisbythreedimensionalfacialimaging AT benketimothya automatedsyndromediagnosisbythreedimensionalfacialimaging AT chatfieldkathrync automatedsyndromediagnosisbythreedimensionalfacialimaging AT davisshanleem automatedsyndromediagnosisbythreedimensionalfacialimaging AT eliasellenr automatedsyndromediagnosisbythreedimensionalfacialimaging AT enzenauerrobertw automatedsyndromediagnosisbythreedimensionalfacialimaging AT frenchbrookem automatedsyndromediagnosisbythreedimensionalfacialimaging AT picklerlaural automatedsyndromediagnosisbythreedimensionalfacialimaging AT shiehjosephtc automatedsyndromediagnosisbythreedimensionalfacialimaging AT slavotinekanne automatedsyndromediagnosisbythreedimensionalfacialimaging AT harroparobertson automatedsyndromediagnosisbythreedimensionalfacialimaging AT innesamicheil automatedsyndromediagnosisbythreedimensionalfacialimaging AT mccandlessshawne automatedsyndromediagnosisbythreedimensionalfacialimaging AT mccourtemilya automatedsyndromediagnosisbythreedimensionalfacialimaging AT meeksnaomijl automatedsyndromediagnosisbythreedimensionalfacialimaging AT tartaglianicoler automatedsyndromediagnosisbythreedimensionalfacialimaging AT tsaiannech automatedsyndromediagnosisbythreedimensionalfacialimaging AT wysejpatrickh automatedsyndromediagnosisbythreedimensionalfacialimaging AT bernsteinjonathana automatedsyndromediagnosisbythreedimensionalfacialimaging AT sanchezlarapedroa automatedsyndromediagnosisbythreedimensionalfacialimaging AT forkertnilsd automatedsyndromediagnosisbythreedimensionalfacialimaging AT bernierfrancoisp automatedsyndromediagnosisbythreedimensionalfacialimaging AT spritzricharda automatedsyndromediagnosisbythreedimensionalfacialimaging AT kleinophird automatedsyndromediagnosisbythreedimensionalfacialimaging |