Cargando…
Tumor Segmentation and Feature Extraction from Whole-Body FDG-PET/CT Using Cascaded 2D and 3D Convolutional Neural Networks
(18)F-Fluorodeoxyglucose-positron emission tomography (FDG-PET) is commonly used in clinical practice and clinical drug development to identify and quantify metabolically active tumors. Manual or computer-assisted tumor segmentation in FDG-PET images is a common way to assess tumor burden, such appr...
Autores principales: | Jemaa, Skander, Fredrickson, Jill, Carano, Richard A. D., Nielsen, Tina, de Crespigny, Alex, Bengtsson, Thomas |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer International Publishing
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522127/ https://www.ncbi.nlm.nih.gov/pubmed/32378059 http://dx.doi.org/10.1007/s10278-020-00341-1 |
Ejemplares similares
-
Heart and bladder detection and segmentation on FDG PET/CT by deep learning
por: Wang, Xiaoyong, et al.
Publicado: (2022) -
Deep Ensembles Are Robust to Occasional Catastrophic Failures of Individual DNNs for Organs Segmentations in CT Images
por: Petrov, Yury, et al.
Publicado: (2023) -
Full automation of total metabolic tumor volume from FDG-PET/CT in DLBCL for baseline risk assessments
por: Jemaa, S., et al.
Publicado: (2022) -
Automated segmentation of lungs and lung tumors in mouse micro-CT scans
por: Ferl, Gregory Z., et al.
Publicado: (2022) -
Automatic Segmentation of Lung Carcinoma Using 3D Texture Features in 18-FDG PET/CT
por: Markel, Daniel, et al.
Publicado: (2013)