Cargando…
Comparison of Radiomics-Based Machine-Learning Classifiers in Diagnosis of Glioblastoma From Primary Central Nervous System Lymphoma
Purpose: The purpose of the current study was to evaluate the ability of magnetic resonance (MR) radiomics-based machine-learning algorithms in differentiating glioblastoma (GBM) from primary central nervous system lymphoma (PCNSL). Method: One-hundred and thirty-eight patients were enrolled in this...
Autores principales: | Chen, Chaoyue, Zheng, Aiping, Ou, Xuejin, Wang, Jian, Ma, Xuelei |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522159/ https://www.ncbi.nlm.nih.gov/pubmed/33042784 http://dx.doi.org/10.3389/fonc.2020.01151 |
Ejemplares similares
-
Radiomics-Based Machine Learning in Differentiation Between Glioblastoma and Metastatic Brain Tumors
por: Chen, Chaoyue, et al.
Publicado: (2019) -
Machine-Learning Classifiers in Discrimination of Lesions Located in the Anterior Skull Base
por: Zhang, Yang, et al.
Publicado: (2020) -
Classifying primary central nervous system lymphoma from glioblastoma using deep learning and radiomics based machine learning approach - a systematic review and meta-analysis
por: Guha, Amrita, et al.
Publicado: (2022) -
Radiomics-Based Machine Learning Technology Enables Better Differentiation Between Glioblastoma and Anaplastic Oligodendroglioma
por: Fan, Yimeng, et al.
Publicado: (2019) -
Ability of Radiomics in Differentiation of Anaplastic Oligodendroglioma From Atypical Low-Grade Oligodendroglioma Using Machine-Learning Approach
por: Zhang, Yang, et al.
Publicado: (2019)