Cargando…
Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4
BACKGROUND: Esophageal cancer (EC) is one of the aggressive gastrointestinal malignancies. It has been reported that microRNAs (miRNAs) play key roles during the tumorigenesis of EC. To identify novel potential targets for EC, differential expressed miRNAs (DEG) between EC and adjacent normal tissue...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Dove
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522318/ https://www.ncbi.nlm.nih.gov/pubmed/33061430 http://dx.doi.org/10.2147/OTT.S251508 |
_version_ | 1783588153975635968 |
---|---|
author | Shi, Woda Song, Jianxiang Gao, Zhengya Liu, Xingchen Wang, Wencai |
author_facet | Shi, Woda Song, Jianxiang Gao, Zhengya Liu, Xingchen Wang, Wencai |
author_sort | Shi, Woda |
collection | PubMed |
description | BACKGROUND: Esophageal cancer (EC) is one of the aggressive gastrointestinal malignancies. It has been reported that microRNAs (miRNAs) play key roles during the tumorigenesis of EC. To identify novel potential targets for EC, differential expressed miRNAs (DEG) between EC and adjacent normal tissues were analyzed with bioinformatics tool. METHODS: The differential expression of miRNAs between EC and adjacent normal tissues was analyzed. CCK-8 and Ki67 staining were used to detect the cell proliferation. Flow cytometry was performed to test the cell apoptosis. The correlation between miR-7-5p and KLF4 was detected by dual-luciferase report assay. Gene and protein expression in EC cells or in tissues were measured by qRT-PCR and Western blot, respectively. Cell migration and invasion were detected with transwell assay. Xenograft mice model was established to investigate the role of miR-7-5p in EC tumorigenesis in vivo. RESULTS: MiR-7-5p was found to be negatively correlated with the survival rate of patient with EC. In addition, downregulation of miR-7-5p significantly inhibited the growth and invasion of EC cells. Meanwhile, miR-7-5p directly targeted KLF4 in EC cells. Moreover, downregulation of miR-7-5p inhibited the tumorigenesis of EC via inactivating MAPK signaling pathway in vivo. CONCLUSION: Downregulation of miR-7-5p notably suppressed the progression of EC via targeting KLF4. Thus, miR-7-5p might serve as a new target for the treatment of EC. |
format | Online Article Text |
id | pubmed-7522318 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Dove |
record_format | MEDLINE/PubMed |
spelling | pubmed-75223182020-10-14 Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 Shi, Woda Song, Jianxiang Gao, Zhengya Liu, Xingchen Wang, Wencai Onco Targets Ther Original Research BACKGROUND: Esophageal cancer (EC) is one of the aggressive gastrointestinal malignancies. It has been reported that microRNAs (miRNAs) play key roles during the tumorigenesis of EC. To identify novel potential targets for EC, differential expressed miRNAs (DEG) between EC and adjacent normal tissues were analyzed with bioinformatics tool. METHODS: The differential expression of miRNAs between EC and adjacent normal tissues was analyzed. CCK-8 and Ki67 staining were used to detect the cell proliferation. Flow cytometry was performed to test the cell apoptosis. The correlation between miR-7-5p and KLF4 was detected by dual-luciferase report assay. Gene and protein expression in EC cells or in tissues were measured by qRT-PCR and Western blot, respectively. Cell migration and invasion were detected with transwell assay. Xenograft mice model was established to investigate the role of miR-7-5p in EC tumorigenesis in vivo. RESULTS: MiR-7-5p was found to be negatively correlated with the survival rate of patient with EC. In addition, downregulation of miR-7-5p significantly inhibited the growth and invasion of EC cells. Meanwhile, miR-7-5p directly targeted KLF4 in EC cells. Moreover, downregulation of miR-7-5p inhibited the tumorigenesis of EC via inactivating MAPK signaling pathway in vivo. CONCLUSION: Downregulation of miR-7-5p notably suppressed the progression of EC via targeting KLF4. Thus, miR-7-5p might serve as a new target for the treatment of EC. Dove 2020-09-24 /pmc/articles/PMC7522318/ /pubmed/33061430 http://dx.doi.org/10.2147/OTT.S251508 Text en © 2020 Shi et al. http://creativecommons.org/licenses/by-nc/3.0/ This work is published and licensed by Dove Medical Press Limited. The full terms of this license are available at https://www.dovepress.com/terms.php and incorporate the Creative Commons Attribution – Non Commercial (unported, v3.0) License (http://creativecommons.org/licenses/by-nc/3.0/). By accessing the work you hereby accept the Terms. Non-commercial uses of the work are permitted without any further permission from Dove Medical Press Limited, provided the work is properly attributed. For permission for commercial use of this work, please see paragraphs 4.2 and 5 of our Terms (https://www.dovepress.com/terms.php). |
spellingShingle | Original Research Shi, Woda Song, Jianxiang Gao, Zhengya Liu, Xingchen Wang, Wencai Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title | Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title_full | Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title_fullStr | Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title_full_unstemmed | Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title_short | Downregulation of miR-7-5p Inhibits the Tumorigenesis of Esophagus Cancer via Targeting KLF4 |
title_sort | downregulation of mir-7-5p inhibits the tumorigenesis of esophagus cancer via targeting klf4 |
topic | Original Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7522318/ https://www.ncbi.nlm.nih.gov/pubmed/33061430 http://dx.doi.org/10.2147/OTT.S251508 |
work_keys_str_mv | AT shiwoda downregulationofmir75pinhibitsthetumorigenesisofesophaguscancerviatargetingklf4 AT songjianxiang downregulationofmir75pinhibitsthetumorigenesisofesophaguscancerviatargetingklf4 AT gaozhengya downregulationofmir75pinhibitsthetumorigenesisofesophaguscancerviatargetingklf4 AT liuxingchen downregulationofmir75pinhibitsthetumorigenesisofesophaguscancerviatargetingklf4 AT wangwencai downregulationofmir75pinhibitsthetumorigenesisofesophaguscancerviatargetingklf4 |